بهبود ذخیره‌سازی هیدروژن در نانوکامپوزیت‌های کبالت/نانولولة کربنی با استفاده از تابش پلاسمای سرد هلیوم

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

گروه فیزیک، دانشکده علوم پایه، دانشگاه لرستان، خرم آباد، ایران

چکیده

در این مقاله به‌بررسی تابش پلاسمای سرد تشکیل شده از گاز هلیوم روی میزان ذخیره‌سازی هیدروژن در نانوکامپوزیت کبالت/نانولولة کربنی می‌پردازیم. برای این مطالعه، محلول را به‌دو بخش تقسیم کرده که یک بخش آن هیچ تابشی از پلاسما را دریافت نمی‌کند و برای بخش دیگر قبل از لایه‌نشانی لایه‌ها، پلاسمای سرد تشکیل شده از گاز هلیوم را روی سوسپانسیون متشکل از نانولوله‌های کربنی چند دیواره و نمک کبالت به‌مدت 30 ثانیه تابش می‌کنیم سپس لایه‌ها را به‌روش الکتروشیمیایی لایه‌نشانی می‌کنیم. نتایج نشان می‌دهند که تیمار پلاسما حتی در یک بازة زمانی کوتاه مانند 30 ثانیه ظرفیت واجذب هیدروژن را از طریق ایجاد نقص و گروه‌های فعال روی سطح نانولوله‌ها که برای ذخیره‌سازی هیدروژن مطلوب هستند، افزایش می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Improving hydrogen storage in cobalt/carbon nanotube nanocomposites using cold helium plasma irradiation

نویسندگان [English]

  • Azadeh Barjasteh
  • maryam malmir
  • Fariba Mosavi
  • Somayeh Alibeigi
  • Fatemeh bazvand
Department of Physics, Faculty of Basic Sciences, Lorestan University, Khorramabad city
چکیده [English]

In this article, we investigate the radiation of cold plasma composed of helium gas on the amount of hydrogen storage in cobalt/carbon nanotube nanocomposite. For this study, the solution is divided into two parts, one part of which does not receive any radiation from the plasma. For the other part, before the layers are deposited, a cold plasma consisting of helium gas is applied to the suspension consisting of multi-walled carbon nanotubes. and we irradiate cobalt salt for 30 seconds, then we address the layers by electrochemical method. The results show that plasma treatment even in a short period like 30 seconds increases the hydrogen desorption capacity by creating defects and active groups on the surface of nanotubes that are favorable for hydrogen storage.

کلیدواژه‌ها [English]

  • Cold plasma
  • Hydrogen storage
  • Cobalt and Carbon nanotube composite
[1] H.M. Cheng, Q.H. Yang, C. Liu, Hydrogen storage in carbon nanotubes. Carbon, 39 (2001) 1447-1454. doi:10.1016/S0008-6223(00)00306-7.
[2] B. Zohuri, Hydrogen energy: Challenges and solutions for a cleaner future, )2019( Springer. https://link.springer.com/book/10.1007/978-3-319-93461-7
[3] J.O. Abe, A. Popoola, E. Ajenifuja, O.M. Popoola, Hydrogen energy, economy and storage: Review and recommendation. International journal of hydrogen energy, 44 (2019( 15072-15086. https://doi.org/10.1016/j.ijhydene.2019.04.068
[4] S. ullah Rather, Preparation, characterization and hydrogen storage studies of carbon nanotubes and their composites: A review. International Journal of Hydrogen Energy, 45 (2020) 4653-4672. https://doi.org/10.1016/j.ijhydene.2019.12.055
[5] L. Schlapbach, A. Züttel, Hydrogen-storage materials for mobile applications. nature, 414 (2001) 353-358. https://doi.org/10.1038/35104634
[6] A. Dillon, M. Heben, Hydrogen storage using carbon adsorbents: past, present and future. Applied Physics A, 72 (2001) 133-142. https://doi.org/10.1007/s003390100788
[7] M. Hirscher, Handbook of hydrogen storage. Topics in applied physics, 12 (2010). DOI: 10.1002/9783527629800
[8] H. Lee, J. Ihm, M.L. Cohen, S.G. Louie, Calcium-decorated graphene-based nanostructures for hydrogen storage. Nano letters, 10 (2010) 793-798. https://doi.org/10.1021/nl902822s
[9] B. Panella, M. Hirscher, S. Roth, Hydrogen adsorption in different carbon nanostructures. Carbon, 43 (2005) 2209-2214. https://doi.org/10.1016/j.carbon.2005.03.037
[10] R. Chahine, T.K. Bose, Low-pressure adsorption storage of hydrogen. International Journal of Hydrogen Energy, (1994) 161-4. https://doi.org/10.1016/0360- 3199(94)90121-X
[11] A.C. Dillon, et al., Carbon nanotube materials for hydrogen storage. Proc. 2000 DOE/NREL Hydrogen program review, (2000).
[12] R. Ströbel, et al., Hydrogen storage by carbon materials. Journal of power sources, 159 (2006) 781-801. https://doi.org/10.1016/j.jpowsour.2006.03.047
[13] K. Atkinson, S. Roth, M. Hirscher, W. Grünwald, Carbon nanostructures: An efficient hydrogen storage medium for fuel cells. Fuel Cells Bulletin, 4 (2001) 9-12. https://doi.org/10.1016/S1464-2859(01)80733-1
[14] A. Reyhani, et al., Hydrogen storage in decorated multiwalled carbon nanotubes by Ca, Co, Fe, Ni, and Pd nanoparticles under ambient conditions. The Journal of Physical Chemistry C, 115 (2011) 6994-7001. https://doi.org/10.1016/S1464-2859(01)80733-1
[15] A. Dhanya, N. Ranjan, S. Ramaprabhu, Hydrogen storage studies of Co, Fe, Fe3C nanoparticles encapsulated nitrogen doped carbon nanotubes. Energy Storage, 5 (2023) e421. https://doi.org/10.1002/est2.421
[16] M. Aghababaei, A.A. Ghoreyshi, K. Esfandiari, Optimizing the conditions of multi-walled carbon nanotubes surface activation and loading metal nanoparticles for enhanced hydrogen storage. international journal of hydrogen energy, 45 (2020) 23112-23121. https://doi.org/10.1016/j.ijhydene.2020.06.201
[17] C. Chung, J. Ihm, H. Lee, Recent progress on Kubas-type hydrogen-storage nanomaterials: from theories to experiments. Journal of the Korean Physical Society, (662015) 1649-55. https://doi.org/10.3938/jkps.66.1649
[18] R. Zacharia, S.-u. Rather, S.W. Hwang, K.S. Nahm, Spillover of physisorbed hydrogen from sputter-deposited arrays of platinum nanoparticles to multi-walled carbon nanotubes. Chemical physics letters, 43 (2007) 286-291. https://doi.org/10.1016/j.cplett.2006.12.022
[19] L. Gao, et al., Hydrogen storage in Pd–Ni doped defective carbon nanotubes through the formation of CHx (x= 1, 2). Carbon, 48 (2010) 3250-3255. https://doi.org/10.1016/j.carbon.2010.05.015
[20] A. D’Angola, G. Colonna, E. Kustova, Thermal and Non-thermal plasmas at atmospheric pressure. Frontiers in Physics, 10 (2022) 39. https://doi.org/10.3389/fphy.2022.852905
[21] M. Babaie, I. Bakoji, R. Erfani, A. Nourian. Nonthermal Plasma for Hydrogen Production. in EGU General Assembly Conference Abstracts. (2021). DOI: 10.5194/egusphere-egu21-16280
[22] W. Li, et al., Non-thermal plasma assisted catalytic water splitting for clean hydrogen production at near ambient conditions. Journal of Cleaner Production, 387 (2023) 135913. https://doi.org/10.1016/j.jclepro.2023.135913
[23] I. Aminu, M.A. Nahil, P.T. Williams, Hydrogen production by pyrolysis–nonthermal plasma/catalytic reforming of waste plastic over different catalyst support materials. Energy & Fuels, 36 (2022) 3788-3801. https://doi.org/10.1021/acs.energyfuels.1c04186
[24] S. Varshoy, B. Khoshnevisan, M. Mohammadi, M. Behpour, Effect of pH on enhancement of hydrogen storage capacity in carbon nanotubes on a copper substrate. Physica B: Condensed Matter, 526 (2017) 143-148. https://doi.org/10.1016/j.physb.2017.05.053
[25] S. Tsang, P. Harris, M. Green, Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature, 362 (1993) 520-522. https://doi.org/10.1038/362520a0
[26] A. Kuznetsova, et al., Enhancement of adsorption inside of single-walled nanotubes: opening the entry ports. Chemical Physics Letters, 321 (2000) 292-296. https://doi.org/10.1016/S0009-2614(00)00341-9
[27] A. Kuznetsova, et al., Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies. Journal of the American Chemical Society, 123 (2001) (43) 10699-10704. DOI: 10.1021/ja011021b
[28] W. Lee, et al., Fabrication of carbon nanotube/copper hybrid nanoplatelets coated carbon fiber composites by thermal vapor and electrophoretic depositions. Electrochemical and Solid-State Letters, 14 (2011) K37. DOI: 10.1149/1.3582354
[29] M. Uysal, et al., Production of Sn–Cu/MWCNT composite electrodes for Li-ion batteries by using electroless tin coating. Thin Solid Films, 572 (2014) 216-223. https://doi.org/10.1016/j.tsf.2014.08.019 [30] M. Mohammadi, B. Khoshnevisan, Electrochemical hydrogen storage in EPD made porous Ni-CNT electrode. International Journal of Hydrogen Energy, 41 (2016) 10311-10315. https://doi.org/10.1016/j.ijhydene.2015.10.051Get rights and content
[31] E. Pajootan, et al., Plasma-functionalized multi-walled carbon nanotubes directly grown on stainless steel meshes as supercapacitor electrodes. Journal of Physics D: Applied Physics, 55 (2022) 194001. DOI: 10.1088/1361-6463/ac4fd8
[32] J. Burress, et al., Hydrogen storage in engineered carbon nanospaces. Nanotechnology, 20 (2009) 204026. DOI: 10.1088/0957-4484/20/20/204026
[33] S. Patchkovskii, et al., Graphene nanostructures as tunable storage media for molecular hydrogen. Proceedings of the National Academy of Sciences, 102 (2005) 10439-10444. https://doi.org/10.1073/pnas.0501030102
[34] Y. Ferro, F. Marinelli, A. Allouche, C. Brosset, Density functional theory investigation of H adsorption on the basal plane of boron-doped graphite. The Journal of chemical physics, 118 (2003) 5650-5657. https://doi.org/10.1063/1.1556091
[35] B. Tarabová, et al., Fluorescence measurements of peroxynitrite/peroxynitrous acid in cold air plasma treated aqueous solutions. Physical Chemistry Chemical Physics, 21 (2019) 8883-8896 https://doi.org/10.1039/C9CP00871C
[36] W.A. Pryor, Oxy-radicals and related species: their formation, lifetimes, and reactions. Annual review of Physiology, 48 (1986) 657-667. https://doi.org/10.1146/annurev.ph.48.030186.003301
[37] P. Lukes, E. Dolezalova, I. Sisrova, M. Clupek, Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2 Plasma Sources Science and Technology, 23 (2014) 015019. DOI: 10.1088/0963-0252/23/1/015019
[38] W.H. Glaze, J.-W. Kang, D.H. Chapin, The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. (1987). https://doi.org/10.1080/01919518708552148
[39] K.F. Sergeichev, et al., Physicochemical properties of pure water treated by pure argon plasma jet generated by microwave discharge in the opened atmosphere. Frontiers in Physics, 8 (2021) 614684. DOI:10.3389/fphy.2020.614684
[40] J. Liang, et al., Reactive oxygen and nitrogen species in Ar+ N2+ O2 atmospheric-pressure nanosecond pulsed plasmas in contact with liquid. Physics of Plasmas, 26 (2019). https://doi.org/10.1063/1.5063707
[41] C.-Y. Hou, T.-K. Kong, C.-M. Lin, H.-L. Chen, The effects of plasma-activated water on heavy metals accumulation in water spinach. Applied Sciences, 11 (2021) 5304. https://doi.org/10.3390/app11115304
[42] W. Li, et al., Effect of hydroxyl radical on the structure of multi-walled carbon nanotubes. Synthetic metals, 155 (2005) 509-515. https://doi.org/10.1016/j.synthmet.2005.07.346
[43] H.D. Yu, J.-L. Meunier, S. Omanovic, Carbon nano-fiber forest foundation for ruthenium oxide pseudo-electrochemical capacitors. Materials Advances, 1 (2020) 215-227. https://doi.org/10.1039/D0MA00023J
[44] D. Sridhar, J.-L. Meunier, S. Omanovic, Directly grown carbon nano-fibers on nickel foam as binder-free long-lasting supercapacitor electrodes. Materials Chemistry and Physics, 223 (2019) 434-440. https://doi.org/10.1016/j.matchemphys.2018.11.024
[45] A. Ilnicka, et al., Combined effect of nitrogen-doped functional groups and porosity of porous carbons on electrochemical performance of supercapacitors. Scientific Reports, 11 (2021) 18387. https://doi.org/10.1038/s41598-021-97932-x
[46] R. Monsef, M. Ghiyasiyan-Arani, M. Salavati-Niasari, Design of magnetically recyclable ternary Fe2O3/EuVO4/g-C3N4 nanocomposites for photocatalytic and electrochemical hydrogen storage. ACS Applied Energy Materials, 4 (2021) 680-695. https://doi.org/10.1021/acsaem.0c02557