[3] J.O. Abe, A. Popoola, E. Ajenifuja, O.M. Popoola, Hydrogen energy, economy and storage: Review and recommendation. International journal of hydrogen energy, 44 (2019( 15072-15086. https://doi.org/10.1016/j.ijhydene.2019.04.068
[4] S. ullah Rather, Preparation, characterization and hydrogen storage studies of carbon nanotubes and their composites: A review. International Journal of Hydrogen Energy, 45 (2020) 4653-4672. https://doi.org/10.1016/j.ijhydene.2019.12.055
[5] L. Schlapbach, A. Züttel, Hydrogen-storage materials for mobile applications. nature, 414 (2001) 353-358. https://doi.org/10.1038/35104634
[6] A. Dillon, M. Heben, Hydrogen storage using carbon adsorbents: past, present and future. Applied Physics A, 72 (2001) 133-142. https://doi.org/10.1007/s003390100788
[7] M. Hirscher, Handbook of hydrogen storage. Topics in applied physics, 12 (2010). DOI: 10.1002/9783527629800
[8] H. Lee, J. Ihm, M.L. Cohen, S.G. Louie, Calcium-decorated graphene-based nanostructures for hydrogen storage. Nano letters, 10 (2010) 793-798. https://doi.org/10.1021/nl902822s
[10] R. Chahine, T.K. Bose, Low-pressure adsorption storage of hydrogen. International Journal of Hydrogen Energy, (1994) 161-4. https://doi.org/10.1016/0360- 3199(94)90121-X
[11] A.C. Dillon, et al., Carbon nanotube materials for hydrogen storage. Proc. 2000 DOE/NREL Hydrogen program review, (2000).
[14] A. Reyhani, et al., Hydrogen storage in decorated multiwalled carbon nanotubes by Ca, Co, Fe, Ni, and Pd nanoparticles under ambient conditions. The Journal of Physical Chemistry C, 115 (2011) 6994-7001. https://doi.org/10.1016/S1464-2859(01)80733-1
[15] A. Dhanya, N. Ranjan, S. Ramaprabhu, Hydrogen storage studies of Co, Fe, Fe3C nanoparticles encapsulated nitrogen doped carbon nanotubes. Energy Storage, 5 (2023) e421. https://doi.org/10.1002/est2.421
[16] M. Aghababaei, A.A. Ghoreyshi, K. Esfandiari, Optimizing the conditions of multi-walled carbon nanotubes surface activation and loading metal nanoparticles for enhanced hydrogen storage. international journal of hydrogen energy, 45 (2020) 23112-23121. https://doi.org/10.1016/j.ijhydene.2020.06.201
[17] C. Chung, J. Ihm, H. Lee, Recent progress on Kubas-type hydrogen-storage nanomaterials: from theories to experiments. Journal of the Korean Physical Society, (662015) 1649-55. https://doi.org/10.3938/jkps.66.1649
[18] R. Zacharia, S.-u. Rather, S.W. Hwang, K.S. Nahm, Spillover of physisorbed hydrogen from sputter-deposited arrays of platinum nanoparticles to multi-walled carbon nanotubes. Chemical physics letters, 43 (2007) 286-291. https://doi.org/10.1016/j.cplett.2006.12.022
[21] M. Babaie, I. Bakoji, R. Erfani, A. Nourian. Nonthermal Plasma for Hydrogen Production. in EGU General Assembly Conference Abstracts. (2021). DOI: 10.5194/egusphere-egu21-16280
[22] W. Li, et al., Non-thermal plasma assisted catalytic water splitting for clean hydrogen production at near ambient conditions. Journal of Cleaner Production, 387 (2023) 135913. https://doi.org/10.1016/j.jclepro.2023.135913
[23] I. Aminu, M.A. Nahil, P.T. Williams, Hydrogen production by pyrolysis–nonthermal plasma/catalytic reforming of waste plastic over different catalyst support materials. Energy & Fuels, 36 (2022) 3788-3801. https://doi.org/10.1021/acs.energyfuels.1c04186
[24] S. Varshoy, B. Khoshnevisan, M. Mohammadi, M. Behpour, Effect of pH on enhancement of hydrogen storage capacity in carbon nanotubes on a copper substrate. Physica B: Condensed Matter, 526 (2017) 143-148. https://doi.org/10.1016/j.physb.2017.05.053
[25] S. Tsang, P. Harris, M. Green, Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature, 362 (1993) 520-522. https://doi.org/10.1038/362520a0
[27] A. Kuznetsova, et al., Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies. Journal of the American Chemical Society, 123 (2001) (43) 10699-10704. DOI: 10.1021/ja011021b
[28] W. Lee, et al., Fabrication of carbon nanotube/copper hybrid nanoplatelets coated carbon fiber composites by thermal vapor and electrophoretic depositions. Electrochemical and Solid-State Letters, 14 (2011) K37. DOI: 10.1149/1.3582354
[31] E. Pajootan, et al., Plasma-functionalized multi-walled carbon nanotubes directly grown on stainless steel meshes as supercapacitor electrodes. Journal of Physics D: Applied Physics, 55 (2022) 194001. DOI: 10.1088/1361-6463/ac4fd8
[32] J. Burress, et al., Hydrogen storage in engineered carbon nanospaces. Nanotechnology, 20 (2009) 204026. DOI: 10.1088/0957-4484/20/20/204026
[33] S. Patchkovskii, et al., Graphene nanostructures as tunable storage media for molecular hydrogen. Proceedings of the National Academy of Sciences, 102 (2005) 10439-10444. https://doi.org/10.1073/pnas.0501030102
[34] Y. Ferro, F. Marinelli, A. Allouche, C. Brosset, Density functional theory investigation of H adsorption on the basal plane of boron-doped graphite. The Journal of chemical physics, 118 (2003) 5650-5657. https://doi.org/10.1063/1.1556091
[35] B. Tarabová, et al., Fluorescence measurements of peroxynitrite/peroxynitrous acid in cold air plasma treated aqueous solutions. Physical Chemistry Chemical Physics, 21 (2019) 8883-8896 https://doi.org/10.1039/C9CP00871C
[37] P. Lukes, E. Dolezalova, I. Sisrova, M. Clupek, Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2 Plasma Sources Science and Technology, 23 (2014) 015019. DOI: 10.1088/0963-0252/23/1/015019
[39] K.F. Sergeichev, et al., Physicochemical properties of pure water treated by pure argon plasma jet generated by microwave discharge in the opened atmosphere. Frontiers in Physics, 8 (2021) 614684. DOI:10.3389/fphy.2020.614684
[40] J. Liang, et al., Reactive oxygen and nitrogen species in Ar+ N2+ O2 atmospheric-pressure nanosecond pulsed plasmas in contact with liquid. Physics of Plasmas, 26 (2019). https://doi.org/10.1063/1.5063707
[41] C.-Y. Hou, T.-K. Kong, C.-M. Lin, H.-L. Chen, The effects of plasma-activated water on heavy metals accumulation in water spinach. Applied Sciences, 11 (2021) 5304. https://doi.org/10.3390/app11115304
[43] H.D. Yu, J.-L. Meunier, S. Omanovic, Carbon nano-fiber forest foundation for ruthenium oxide pseudo-electrochemical capacitors. Materials Advances, 1 (2020) 215-227. https://doi.org/10.1039/D0MA00023J
[44] D. Sridhar, J.-L. Meunier, S. Omanovic, Directly grown carbon nano-fibers on nickel foam as binder-free long-lasting supercapacitor electrodes. Materials Chemistry and Physics, 223 (2019) 434-440. https://doi.org/10.1016/j.matchemphys.2018.11.024
[45] A. Ilnicka, et al., Combined effect of nitrogen-doped functional groups and porosity of porous carbons on electrochemical performance of supercapacitors. Scientific Reports, 11 (2021) 18387. https://doi.org/10.1038/s41598-021-97932-x
[46] R. Monsef, M. Ghiyasiyan-Arani, M. Salavati-Niasari, Design of magnetically recyclable ternary Fe2O3/EuVO4/g-C3N4 nanocomposites for photocatalytic and electrochemical hydrogen storage. ACS Applied Energy Materials, 4 (2021) 680-695. https://doi.org/10.1021/acsaem.0c02557