[1] I. Žutić, J. Fabian, S.D. Sarma, Spintronics: Fundamentals and applications, Reviews of modern physics, 76 (2004) 323. https://doi.org/14.1143/RevModPhys.76.323
[2] S. Fathizadeh, S. Behnia, J. Ziaei, Engineering DNA molecule bridge between metal electrodes for high-performance molecular transistor: an environmental dependent approach, The Journal of Physical Chemistry B, 122 (2018) 2487-2494. https://doi.org/10.1021/acs.jpcb.7b10034
[3] P.C. Mondal, W. Mtangi, C. Fontanesi, Chiro‐Spintronics: Spin‐Dependent Electrochemistry and Water Splitting Using Chiral Molecular Films, Small methods, 2 (2018) 1700313. https://doi.org/10.1002/smtd.201700313
[4] H. Wang, F. Yin, L. Li, M. Li, Z. Fang, C. Sun, B. Li, J. Shi, J. Li, L. Wang, Twisted DNA origami-based chiral monolayers for spin filtering, Journal of the American Chemical Society, (2024). https://doi.org/10.1021/jacs.3c11566
[5] B. Mikaeeli Kangarshahi, S.M. Naghib, N. Rabiee, DNA/RNA-based electrochemical nanobiosensors for early detection of cancers, Critical reviews in clinical laboratory sciences, (2024) 1-23. https://doi.org/10.1080/10408363.2024.2321202
[6] H. Qi, L. Wang, K.-w. Wong, Z. Du, DNA-quantum dot sensing platform with combined Förster resonance energy transfer and photovoltaic effect, Applied Physics Letters, 94 (2009). https://doi.org/10.1063/1.3117193
[7] M. Minunni, S. Tombelli, M. Mascini, A. Bilia, M.C. Bergonzi, F.F. Vincieri, An optical DNA-based biosensor for the analysis of bioactive constituents with application in drug and herbal drug screening, Talanta, 65 (2005) 578-585. https://doi.org/10.1016/j.talanta.2004.07.020
[9] S. Shi, X. Wang, W. Sun, X. Wang, T. Yao, L. Ji, Label-free fluorescent DNA biosensors based on metallointercalators and nanomaterials, Methods, 64 (2013) 305-314. https://doi.org/10.1016/j.ymeth.2013.07.004
[11] H. Wang, H.K. Bisoyi, A.M. Urbas, T.J. Bunning, Q. Li, Reversible circularly polarized reflection in a self-organized helical superstructure enabled by a visible-light-driven axially chiral molecular switch, Journal of the American Chemical Society, 141 (2019) 8078-8082. https://doi.org/10.1021/jacs.9b03231
[12] S. Behnia, F. Nemati, S. Fathizadeh, Modulation of spin transport in DNA-based nanodevices by temperature gradient: A spin caloritronics approach, Chaos, Solitons & Fractals, 116 (2018) 8-13. https://doi.org/14.1416/j.chaos.2410.49.446
[13] I. Likhachev, V. Lakhno, The direct investigation of DNA denaturation in Peyrard-Bishop-Dauxois model by molecular dynamics method, Chemical Physics Letters, 727 (2019) 55-58. https://doi.org/10.1016/j.cplett.2019.04.027
[15] S. Mohammadi, M. Esmailpour, F. Khoeini, Investigation of Graphene and Silicene-DNA nanostructures: DNA Sensing, Journal of Research on Many-body Systems, 10(202) 1-12. https://doi.org/10.22055/jrmbs.2020.15567
[19] S. Fathizadeh, S. Behnia, F. Nemati, M. Salimi, H. Borjkhani, Chaotic control of the dynamical behavior of covid-19 through the electromagnetic fields, Physica Scripta, 97 (2022) 085008. https://doi.org/10.1088/1402-4896/ac7fc1
[20] Y.S. Joe, S. Malakooti, E.R. Hedin, Controllable negative differential resistance on charge transport through strained and tilted DNA molecules, International Journal of Modern Physics B, 33 (2019) 1950099. https://doi.org/14.1142/S4217979219544991
[21] X. Yang, Q. Wang, K. Wang, W. Tan, J. Yao, H. Li, Electrical switching of DNA monolayers investigated by surface plasmon resonance, Langmuir, 22 (2006) 5654-5659. https://doi.org/10.1021/la052907m
[22] U. Rant, K. Arinaga, S. Fujita, N. Yokoyama, G. Abstreiter, M. Tornow, Dynamic electrical switching of DNA layers on a metal surface, Nano Letters, 4 (2004) 2441-2445. https://doi.org/10.1021/nl0484494
[23] C.-J. Xia, D.-S. Liu, H.-C. Liu, X.-J. Zhai, Large negative differential resistance in a molecular device with asymmetric contact geometries: a first-principles study, Physica E: Low-dimensional Systems and Nanostructures, 43 (2011) 1518-1521. https://doi.org/10.1016/j.physe.2011.04.020
[25] S. Lakshmi, S. Dutta, S.K. Pati, Molecular electronics: effect of external electric field, The Journal of Physical Chemistry C, 112 (2008) 14718-14730. https://doi.org/10.1021/jp800187e
[26] M. Filianina, Z. Wang, L. Baldrati, K. Lee, M. Vafaee, G. Jakob, M. Kläui, Impact of the interplay of piezoelectric strain and current-induced heating on the field-like spin–orbit torque in perpendicularly magnetized Ta/Co20Fe60B20/Ta/MgO film, Applied Physics Letters, 118 (2021). https://doi.org/10.1063/5.0035869