The study of azimuthal correlation contribution in polarized top quark decay: Search for new physics

Document Type : Full length research Paper

Authors

1 Department of physics, Yazd university, Yazd, Iran

2 Faculty of Physics, Yazd University, P.O. Box 89195-741, Yazd, Iran

Abstract

The study of polarized top quark decay could be considered as a new channel to search for new physics. According to the Standard Model (SM) of particle physics, top quark in a cascade process as decays into a bottom quark and -boson so in the following, -boson decays in a lepton pair (or a quark-antiquark) and bottom hadronizes into an observable bottom-flavored hadron (in most cases a B-meson). Through this paper, we first present an overview on the polarized top quark decay and then study the azimuthal correlation between the event plane, formed by the vectors , and the polar plane constructed by the vectors . We will investigate the effect of right-chiral quark current which is absent in the SM. We will show that this non-SM effect leads to nonzero values for the azimuthal correlation contribution at leading-order perturbation theory.

Keywords

Main Subjects


 [1] D. Roy, Neutrino mass and oscillation: An introductory review, Pramana, 54 (2000) 3-20. doi:10.1007/s12043-000-0002-8
[2] R. Rosenfeld, J.L. Rosner, Hierarchy and anarchy in quark mass matrices, or can hierarchy tolerate anarchy?, Physics Letters B, 516 (2001) 408-414. doi:10.1016/S0370-2693(01)00948-0
[3] A. Armat, S. Mohammad Moosvi Nejad, M. Farhadi, Analytical determination of binding energy and magnetic moment of light single-lambda hypernuclei, Journal of Research on Many-body Systems 13 (2023) 21-33.[In Persian] Doi:10.22055/jrmbs.2023.18419
[4] K. Lane, An Introduction to technicolor,  The Building Blocks of Creation: From Microfermis to Megaparsecs, World Scientific (1994) 381-408. doi:10.1142/9789814503785_0010
[5] H. Georgi, Unparticle physics, Physical Review Letters, 98 (2007) 221601. doi:10.1103/PhysRevLett.98.221601
[6] M.R. Douglas, N.A. Nekrasov, Noncommutative field theory, Reviews of Modern Physics, 73 (2001) 977. doi:10.1103/RevModPhys.73.977
[7] L. Ghegal, A. Benslama, New limit for the noncommutativity parameter of the noncommutative standard model, International Journal of Modern Physics A, 29 (2014) 1450199. doi: 10.1142/S0217751X14501991
[8] N. Mahajan, t→bW in the noncommutative standard model, Physical Review D, 68 (2003) 095001. doi: 10.1103/PhysRevD.68.095001
[9] S.M.M. Nejad, V. Ekraminasab, Heavy hadron production through pair annihilation in the ordinary and noncommutative SM, Nuclear Physics A, 1044 (2024) 122844. doi: 10.1016/j.nuclphysa.2024.122844
[10] N. Cabibbo, Unitary symmetry and leptonic decays, Physical Review Letters, 10 (1963) 531. doi:10.1103/PhysRevLett.10.531
[11] M. Kobayashi, T. Maskawa, CP-violation in the renormalizable theory of weak interaction, Progress of theoretical physics, 49 (1973) 652-657. doi:10.1143/PTP.49.652
[12] B.A. Kniehl, G. Kramer, S.M.M. Nejad, Bottom-flavored hadrons from top-quark decay at next-to-leading order in the general-mass variable-flavor-number scheme, Nuclear Physics B, 862 (2012) 720-736. doi:10.1016/j.nuclphysb.2012.05.008
[13] B.A. Kniehl, S.M. Moosavi Nejad, Angular analysis of bottom-flavored hadron production in semileptonic decays of polarized top quarks, Physical Review D, 103 (2021) 034015. doi:10.1103/PhysRevD.103.034015
[14] S. M. Moosavinejad, S. Paktinat Mehdiabadi, Study of energy distribution of produced mesons through top quark decay considering the-polarization, Journal Modern Research Physics, 3 (2018) 57-68. URL: http://jmrph.khu.ac.ir/article-1-81-en.html
[16] B. Altschul, Top hadrons in Lorentz-violating field theory, Physical Review D, 102 (2020) 075010. doi:10.1103/PhysRevD.102.075010
[17] M.S. Berger, V.A. Kostelecky, Z. Liu, Lorentz and CPT Violation in Top-Quark Production and Decay, Physical Review D 93 (2016) 036005. doi: 10.1103/PhysRevD.93.036005
[18] V.M. Abazov, B. Abbott, B.S. Acharya, M. Adams, T. Adams, G.D. Alexeev, G. Alkhazov, A. Alton, G. Alverson, M. Aoki, Search for violation of Lorentz invariance in top quark pair production and decay, Physical review letters, 108 (2012) 261603. doi: 10.1103/PhysRevLett.108.261603
[19] A.M. Sirunyan, A. Tumasyan, W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, Cross section measurement of t-channel single top quark production in pp collisions at s= 13TeV, Physics Letters B, 772 (2017) 752-776. doi:10.1016/j.physletb.2017.07.047
[20] S. Groote, J.G. Koerner, B. Melić, S. Prelovsek, Survey of top quark polarization at a polarized linear e+ e-collider, Physical Review D—Particles, Fields, Gravitation, and Cosmology, 83 (2011) 054018. doi:10.1103/PhysRevD.83.054018
[21] S. Moch, P. Uwer, Theoretical status and prospects for top-quark pair production at hadron colliders, Physical Review D—Particles, Fields, Gravitation, and Cosmology, 78 (2008) 034003. doi:10.1103/PhysRevD.78.034003
[22] S. Groote, W. Huo, A. Kadeer, J. Korner, Azimuthal correlation between the  and planes in the semileptonic rest frame decay of a polarized top quark: An O(αs) effect, Physical Review D, 76 (2007) 014012. doi:10.1103/PhysRevD.76.014012
[23] S.M. Moosavi Nejad, S. Abbaspour, R. Farashahian, Interference effects for the top quark decays t→ b+ W+/H+(→ τ+ ν τ), Physical Review D, 99 (2019) 095012. doi:10.1103/PhysRevD.99.095012
[24] M. Tanabashi, P.D. Grp, K. Hagiwara, K. Hikasa, K. Nakamura, Y. Sumino, F. Takahashi, J. Tanaka, K. Agashe, G. Aielli, Review of particle physics, Physical Review D, 98 (2018)3, 030001. doi:10.1103/PhysRevD.98.030001
[25] E. Fuchs, S. Thewes, G. Weiglein, Interference effects in BSM processes with a generalised narrow-width approximation, The European Physical Journal C, 75 (2015) 1-30. doi:10.1140/epjc/s10052-015-3472-z
[26] M. Peskin, D. Schroeder, An Introduction to Quantum Field Theory. 842 pp. isbn: 9780201503975, Addison-Wesley Publishing Company, Reading, PA (USA), 1995.
[27] J. Beringer, Particle data group, Phys. Rev. D, 86 (2012) 010001. doi:10.1103/PhysRevD.86.010001
[28] S.M.M. Nejad, M. Balali, Hadron energy spectrum in polarized top-quark decays considering the effects of hadron and bottom quark masses, The European Physical Journal C, 76 (2016) 1-10. doi:10.1140/epjc/s10052-016-4017-9
[29] A. Czarnecki, M. Jeżabek, Distributions of leptons in decays of polarised heavy quarks, Nuclear Physics B, 427 (1994) 3-21. doi:10.1016/0550-3213(94)90266-6
[30] G. Burdman, M.C. Gonzalez-Garcia, S.F. Novaes, Anomalous couplings of the third generation in rare B decays, Physical Review D, 61 (2000) 114016. doi:10.1103/PhysRevD.61.114016
[31] K. Fujikawa, A. Yamada, Test of the chiral structure of the top-bottom charged current by the process b→ s γ, Physical Review D, 49 (1994) 5890. doi:10.1103/PhysRevD.49.5890
[32] F. Larios, M. Perez, C.-P. Yuan, Analysis of tbW and ttZ couplings from CLEO and LEP/SLC data, Physics Letters B, 457 (1999) 334-340. doi:10.1016/S0370-2693(99)00541-9
[33] E. Byckling, K. Kajantie, Particle Kinematics John Wiley & Sons, London UK, (1973).