[1] M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory, Cambridge University Press, Cambridge, United Kingdom, (1987).
[4] S. Weinberg, Gravitation and Cosmology, Wiley, New York, (1972).
[7] H. Motohashi, A.A. Starobinsky, Constant-roll inflation in scalar-tensor gravity, Journal of Cosmology and Astroparticle Physics, 11 (2019) 025. doi.org/10.1088/1475-7516/2019/11/025.
[9] B.P. Abbott et al., (LIGO Scientific Collaboration and Virgo Collaboration), Observation of Gravitational Waves from a Binary Black Hole Merger, Physical Review Letters, 116 (2016) 061102. doi.org/10.1103/PhysRevLett.116.061102.
[13] A. Sheykhi, H. Alavirad, Topological Black Holes in Brans-Dicke-Maxwell Theory, International Journal of Modern Physics D, 18 (2009) 1773. doi.org/10.1142/S021827180901531X.
[14] M.K. Zangeneh, M.H. Dehghani, A. Sheykhi, Thermodynamics of topological black holes in Brans-Dicke gravity with a power-law Maxwell field, Physical Review D, 92 (2015) 104035. doi.org/10.1103/PhysRevD.92.104035.
[16] M. Dehghani, Black hole thermodynamics in the Brans–Dicke–Maxwell theory, European Physical Journal C, 83 (2023) 734. doi.org/10.1140/epjc/s10052-023-11917-w.
[17] M. Kord Zangeneh, A. Sheykhi and M.H. Dehghani, Thermodynamics of higher dimensional topological dilaton black holes with power-law Maxwell field, Physical Review D, 91 (2015) 044035. doi.org/10.1103/PhysRevD.91.044035.
[20] M. Dehghani, Three-dimensional scalar-tensor black holes with conformally invariant electrodynamics, Physical Review D, 100 (2019) 084019. doi.org/10.1103/PhysRevD.100.084019.
[21] M. Dehghani, Thermodynamics of black holes charged with a conformally invariant electrodynamics in (n+1)-dimensional scalar-tensor theory, Modern Physics Letters A, 39 (2024) 2450009. doi.org/10.1142/S0217732324500093.
[22] A. Sheykhi and A. Kazemi, Higher dimensional dilaton black holes in the presence of exponential nonlinear electrodynamics, Physical Review D, 90 (2014) 044028. doi.org/10.1103/PhysRevD.90.044028.
[23] S.H. Hendi and M. Momennia, Thermodynamic instability of topological black holes with nonlinear source, European Physical Journal C, 75 (2015) 54. 10.1140/epjc/s10052-015-3283-2.
[24] M. Dehghani, Thermodynamic properties of dilaton black holes with nonlinear electrodynamics, Physical Review D, 98 (2018) 044008, doi.org/10.1103/PhysRevD.98.044008.
[26] S. Habib Mazharimousavi and M. Halilsoy, Einstein-Born-Infeld black holes with a scalar hair in three-dimensions, Modern Physics Letters A, 30 (2015) 1550177. doi.org/10.1142/S0217732315501771.
[27] N.B. Birrell, P.C.W. Davies, Quantum Fields in Curved Space, Cambridge University Press, Cambridge, (1982).
[28] A. Sheykhi and S. Hajkhalili, Dilaton black holes coupled to nonlinear electrodynamic field, Physical Review D, 89 (2014) 104019. doi.org/10.1103/PhysRevD.89.104019.
[29] M. Dehghani, Thermodynamics of novel scalar-tensor-Born-Infeld black holes the, European Physical Journal C, 83 (2023) 987. doi.org/10.1140/epjc/s10052-023-12155-w.
[30] S.H. Hendi, R. Ramezani-Arani and E. Rahimi, Thermal stability of d-dimensional Lifshitz like topological black holes in special class of F(R) gravity, Journal of Research on Many-body Systems, 10 (2020) 147. doi.org/10.22055/JRMBS.2020.15569.
[31] H.W. Braden, J.D. Brown, B.F. Whiting, J.W. York, Charged black hole in a grand canonical ensemble, Physical Review D 42, (1990) 3376. doi.org/10.1103/PhysRevD.42.3376.
[32] S. Soroushfar and B. Pourhassan, Thermodynamic geometry of a charged AdS black hole with corrected entropy, Journal of Research on Many-body Systems, 11 (2021) 74. doi.org/10.22055/JRMBS.2021.17029.