Thermodynamics of four-dimensional Brans-Dicke black holes in the presence of power Maxwell electrodynamics

Document Type : Full length research Paper

Author

Department of Physics, Faculty of Science, Razi University, Kermanshah, Iran

Abstract

In this study, the exact black hole (BH) solutions of Brans-Dicke (BD) theory were obtained under the influence of power-Maxwell nonlinear electrodynamics. Since the Jordan frame field equations are highly nonlinear, they cannot be solved directly. Using the conformal transformations, we translated them to the Einstein frame, where the field equations are decupled, and the theory is the well-known Einstein-dilaton (Ed) gravity. Through solving the equations, three novel classes of Ed-power-Maxwell BHs were introduced. After calculating the thermodynamic quantities, using the appropriate approaches, we showed that the first law of BH thermodynamics is valid in the Einstein frame. Also, thermal stability of the BHs was analyzed using the canonical ensemble method. The exact BH solutions of BD-power-Maxwell theory were obtained from their Einstein correspondence by applying the inverse conformal transformations. We showed that thermodynamic quantities remain invariant under conformal transformations. As the result, thermodynamical first law is valid for the Jordan frame BHs and, their thermal stability properties are just like those of Einstein frame.

Keywords

Main Subjects


[1] M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory, Cambridge University Press, Cambridge, United Kingdom, (1987).
[2] G.W. Gibbons, K. Maeda, Black holes and membranes in higher-dimensional theories with dilaton fields, Nuclear Physics B, 298 (1988) 741 .doi.org/10.1016/0550-3213(88)90006-5.
[3] C. Brans, R. Dicke, Mach's Principle and a Relativistic Theory of Gravitation, Physical Review, 124 (1961) 925. doi.org/10.1103/PhysRev.124.925.
[4] S. Weinberg, Gravitation and Cosmology, Wiley, New York, (1972).
[5] S. Nojiri, G.G.L. Nashed, Stable gravastar with large surface redshift in Einstein's gravity with two scalar fields, Journal of Cosmology and Astroparticle Physics, 2024 (03) (2024) 023. doi.org/10.1088/1475-7516/2024/03/023.
[6] S. Nojiri, S.D. Odintsov, A. Sedrakian, Extremely small stars in scalar-tensor gravity: when stellar radius is less than Schwarzschild one, Nuclear Physics B, (2024) 116628. doi.org/10.1016/j.nuclphysb.2024.116628.
[7] H. Motohashi, A.A. Starobinsky, Constant-roll inflation in scalar-tensor gravity, Journal of Cosmology and Astroparticle Physics, 11 (2019) 025. doi.org/10.1088/1475-7516/2019/11/025.
[8] M. Ildes, M. Arik, Analytic solutions of Brans–Dicke cosmology: Early inflation and late time accelerated expansion, International Journal of Modern Physics D, 32 (2023) 2250131. doi.org/10.1142/S0218271822501310.
[9] B.P. Abbott et al., (LIGO Scientific Collaboration and Virgo Collaboration), Observation of Gravitational Waves from a Binary Black Hole Merger, Physical Review Letters, 116 (2016) 061102. doi.org/10.1103/PhysRevLett.116.061102.
[10] S.W. Hawking, Black holes and thermodynamics, Physical Review D, 13 (1976) 191, doi.org/10.1103/PhysRevD.13.191.
[11] J.D. Bekenstein, Black holes and Entropy, Physical Review D, 7 (1973) 2333. doi.org/10.1103/PhysRevD.7.2333.
[12] R.M. Wald, The thermodynamics of black holes, Living Reviews in Relativity, 4 (2001) 6. doi.org/10.12942/lrr-2001-6.
[13] A. Sheykhi, H. Alavirad, Topological Black Holes in Brans-Dicke-Maxwell Theory, International Journal of Modern Physics D, 18 (2009) 1773. doi.org/10.1142/S021827180901531X.
[14] M.K. Zangeneh, M.H. Dehghani, A. Sheykhi, Thermodynamics of topological black holes in Brans-Dicke gravity with a power-law Maxwell field, Physical Review D,  92 (2015) 104035. doi.org/10.1103/PhysRevD.92.104035.
[15] R.-G. Cai, Y.S. Myung, Black holes in the Brans-Dicke-Maxwell theory, Physical Review D, 56 (1997) 3466. doi.org/10.1103/PhysRevD.56.3466.
[16] M. Dehghani, Black hole thermodynamics in the Brans–Dicke–Maxwell theory, European Physical Journal C, 83 (2023) 734. doi.org/10.1140/epjc/s10052-023-11917-w.
[17] M. Kord Zangeneh, A. Sheykhi and M.H. Dehghani, Thermodynamics of higher dimensional topological dilaton black holes with power-law Maxwell field,  Physical Review D, 91 (2015) 044035. doi.org/10.1103/PhysRevD.91.044035.
[18] S.H. Hendi, Asymptotic charged BTZ black hole solutions, Journal of High Energy Physics, 03 (2012) 065. doi.org/10.1007/JHEP03(2012)065.
[20] M. Dehghani, Three-dimensional scalar-tensor black holes with conformally invariant electrodynamics, Physical Review D, 100 (2019) 084019. doi.org/10.1103/PhysRevD.100.084019.
[21] M. Dehghani, Thermodynamics of black holes charged with a conformally invariant electrodynamics in (n+1)-dimensional scalar-tensor theory, Modern Physics Letters A, 39 (2024) 2450009. doi.org/10.1142/S0217732324500093.
[22] A. Sheykhi and A. Kazemi, Higher dimensional dilaton black holes in the presence of exponential nonlinear electrodynamics, Physical Review D, 90 (2014) 044028. doi.org/10.1103/PhysRevD.90.044028.
[23] S.H. Hendi and M. Momennia, Thermodynamic instability of topological black holes with nonlinear source, European Physical Journal C, 75 (2015) 54. 10.1140/epjc/s10052-015-3283-2.
[24] M. Dehghani, Thermodynamic properties of dilaton black holes with nonlinear electrodynamics, Physical Review D, 98 (2018) 044008, doi.org/10.1103/PhysRevD.98.044008.
[25] I.Z. Stefanov, S.S. Yazadjiev and M.D. Todorov, Scalar–tensor black holes coupled to Euler–Heisenberg nonlinear electrodynamics, Modern Physics Letters A, 17 (2007) 1217. doi.org/10.1142/S0217732307023560.
[26] S. Habib Mazharimousavi and M. Halilsoy, Einstein-Born-Infeld black holes with a scalar hair in three-dimensions, Modern Physics Letters A, 30 (2015) 1550177. doi.org/10.1142/S0217732315501771.
[27] N.B. Birrell, P.C.W. Davies, Quantum Fields in Curved Space, Cambridge University Press, Cambridge, (1982).
[28] A. Sheykhi and S. Hajkhalili, Dilaton black holes coupled to nonlinear electrodynamic field, Physical Review D, 89 (2014) 104019. doi.org/10.1103/PhysRevD.89.104019.
[29] M. Dehghani, Thermodynamics of novel scalar-tensor-Born-Infeld black holes the, European Physical Journal C, 83 (2023) 987. doi.org/10.1140/epjc/s10052-023-12155-w.
[30] S.H. Hendi, R. Ramezani-Arani and E. Rahimi, Thermal stability of d-dimensional Lifshitz like topological black holes in special class of F(R) gravity, Journal of Research on Many-body Systems, 10 (2020) 147. doi.org/10.22055/JRMBS.2020.15569.
[31] H.W. Braden, J.D. Brown, B.F. Whiting, J.W. York, Charged black hole in a grand canonical ensemble, Physical Review D 42, (1990) 3376. doi.org/10.1103/PhysRevD.42.3376.
[32] S. Soroushfar and B. Pourhassan, Thermodynamic geometry of a charged AdS black hole with corrected entropy, Journal of Research on Many-body Systems, 11 (2021) 74. doi.org/10.22055/JRMBS.2021.17029.