A study on Synthesis of strontium aluminate nanoparticles and doping with dysprosium

Somayeh Baham Bakhtiari¹, Morteza Zargar Shoushtar ^{1, 2,*} and Mohammad Sabaeian^{1, 2}

Received: 18.09.2018 Final revised: 17.10.2018 Accepted: 28.11.2018

Abstract

In this research, the synthesis of strontium aluminate nanoparticles (SrAl₂O₄) by using of combustion method assisted by microwave and doping them with dysprosium (SrAl₂O₄:Dy) have been investigated. Characterization of nanoparticles was performed by XRD, FT-IR, EDS, FESEM, UV-Vis and PL. In the synthesis stage, the data of XRDs confirmed the formation of the monoclinic phase of strontium aluminate with space group P_{1211} , in the sample with the fuel to nitrate ratio of 3 to 1, pH value of 5.5, and microwave irradiation time of 5 minutes, calcination time of an hour and calcination temperature of 600 °C. By using the X-ray powder diffraction data and Scherrer's formula, the average size of nanocrystallites was obtained about 26 nm. In the substitution stage, in order to optimize the luminescence of $SrAl_2O_4$ nanoparticles, different percentages of doping were investigated. Among the synthesized nanoparticles, the sample of $Sr_{0.9}Al_2O_4$: $Dy_{0.1}$ nanoparticles with the average nanoparticles size 34 ± 3 nm; most frequent distribution of nanoparticles between 30 and 35 nm; optical gap energy equal to 4.21 ± 0.01 eV and with the highest emission intensity in photoluminescence spectrum, was chosen as an optimal sample in terms of the structural and optical properties.

Keywords: Nanophosphorescence, Strontium aluminate, Microwave combustion method, Dysprosium.

¹ Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, I. R. Iran

² Center for Research on Laser and Plasma, Shahid Chamran University of Ahvaz, Ahvaz, I. R. Iran

^{*} Corresponding Author: zargar@scu.ac.ir