Optical phonon modes in BaWO4 crystal

Document Type : Full length research Paper

Abstract

The Born effective charges, zone center phonon modes and infrared reflectivity spectra at normal incidence on the [100] and [001] surface of BaWO4 were calculated, using density functional perturbation theory. The calculated born effective charges display large deviations from nominal ionic charges, reflecting the mixed ionic-covalent nature of the chemical bonding. The phonon modes were identified in terms of symmetry species, using group theory and character table of C4h point group. The calculated phonon frequencies were in good agreement with the reported experimental values. The obtained results predict the frequency of a Raman active Bg mode that has not been earlier observed experimentally. 

Keywords


[1] P. Cerny, H. Jehnkova, P.G. Zverev, T.T. Basiev, Solid state lasers with Raman freq -uency conversion, Progress in Quantum Electronics Journal. 28 (2004) 113-143.
[2] C. Wang, X. Zhang, Q. Wang, Z. Cong, Z. Liu, W. Wei, W. Wang, Z. Wu, Y. Zhang, L. Li, X. Chen, P. Li, H. Zhang, S. Ding, Extracavity pumped BaWO4 anti-Stokes Raman laser. Optics Express 21 (2013) 26014-26026.
[3] X. Sun, X. Li, X. Sun, J. He, B. Wang, Hydrothermal synthesis, characterization, and luminescence of BaWO4 nanorods, Journal of Materials Science 25 (2014) 1647-1651.
[4] G. Jia, D. Dong, J. Liu, Q. Kang, C. Zhang, Well-defined BaWO4: Dy3+ luminescent materials: hydrothermal synthesis and luminescence properties, Advanced Materials Research. 998-999 (2014) 128-131.
[5] D. Ran, H. Xia, S. Sun, P. Zhao, F. Liu, Z. Ling, W. Ge, H. Zhang, J. Wang, Optical phonon modes and transmissivity in BaWO4 single crystal, Crystal Research and Technology 41(2006)1189-1193.
[6] E. Gurmen, E. Daniels, J.S. King, crystal structure refinement of SrMoO4, SrWO4, CaMoO4 and BaWO4 by neutron diffraction, Journal of Chemical Physics 55 (1971) 1093-1097.
[7] S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Phonons and related properties from density functional perturbation theory, Reviews of Modern Physics 73 (2001) 515-562.
[8] X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M.Verstraete, G. Zerah, F.Jollet, M.Torrent, A. Roy, M. Mikami, Ph.  Ghosez, J.-Y. Raty, D.C. Allan, Computational Materials Science 25 (2002) 478-492.
[9] D.M. Ceperley, B.J. Alder, Ground state of the electron gas by a stochastic method, Physical Review Letters 45 (1980) 566-569.
[10] C. Hartwigsen, S. Goedecker, J. Hutter, Relativistic separable dual space Gaussian pseudopotentials from H to Rn, Physical Review B 58 (1998) 3641-3662.
[11] H.J. Monkhorst, J.D. Pack, Special points for Brillouin zone integrations, Physical Review B 13 (1976) 5188-5192.
[12] J. Schlegel, Optimization of equilibrium geometries and transition structures, Journal of Computational Chemistry 3 (1982) 214-218.
[13] X. Gonze, D.C. Allan, M.P. Teter, Dielectric tensor effective charges and phonons in α-quartz by variational density functional perturbation theory, Physical Review Letters 68 (1992) 3603-3606.
[14] X. Gonze, First principles responses of solids to atomic displacements and homogeneous electric fields: implementation of a conjugate gradient algorithm, Physical Review B 55 (1997) 10337-10354.
[15] X. Gonze, C. Lee, Dynamical matrices, Born effective charges, dielectric permittivity tensors and interatomic force constants from density functional perturbation theory, Physical Review B 55 (1997) 10355-10368.
[16] H.C. Hsueh, M.C. Warren, H. Vass, G.J. Ackland, S.J. Clark, J. Crain, Vibrational properties of the layered semiconductor germanium sulfide under hydrostatic pressure: Theory and experiment, Physical Review B 53 (1996) 14806-14817.
 [17] G.M. Rignanese, X. Gonze, A. Pasquarello, First principle study of structural, electronic, dynamical and dielectric properties of zircon,  Physical Review B 63 (2001) 104305-7.
[18] Z.C. Ling, H.R. Xia, D.G. Ran, F.Q. Liu, S.Q. Sun, J.D. Fan, H.J. Zhang, J.Y. Wang, L.L. Yu, Lattice vibration spectraand thermal properties of SrWO4 single crystal, Chemical Physics Letters 426 (2006) 85-90.
[19] R.C. Powell, Symmetry, group theory, and the physical properties of crystals, Springer, (2010).  
[20] D.L. Rousseau, R.P. Bauman, S.P.S. Porto, Normal mode determination in crystals, Journal of Raman Spectroscopy 10 (1981) 253-290.
[21] S.P.S. Porto, J. Scott, Raman spectra of CaWO4, SrWO4, CaMoO4 and SrMoO4, Physical Review157 (1967) 716-719.
[22] T.T. Basiev, A.A. Sobol, Y.K. Voronko, P.G. Zverev, Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers, Optical Materials15 (2000) 205-216.
[23] F.J. Manjon, D. Errandonea, N. Garro, J.P. Porres, P.R. Hernandez, S. Radescu, J.L. Solano, A. Mujica, A. Munoz, Lattice dynamics study of sceelite tungstates under high pressure I. BaWO4, Physical Review B 74 (2006) 144111-17.
[24] S.M.M. Zawawi, R. Yahya, A. Hassan, H.N.M.E. Mahmud, M.N. Daud, Structural and optical characterization of metal tungstates (MWO4; M=Ni, Ba, Bi) synthesized by a sucrose-templated method, Chemistry Central Journal 7 (2013) 80-10.