[1] Z. Ganjiani, F. Jamali-Sheini, R. Yousefi, Electrochemical synthesis and physical properties of Sn-doped CdO nanostructures, Superlattices and Microstructures 100 (2016) 988-996.
[2] R. Yousefi, F. Jamali-Sheini, M. Cheraghizade, S. Khosravi-Gandomani, A. Sáaedi, N.M. Huang, W.J. Basirun, M. Azarang, Enhanced visible-light photocatalytic activity of strontium-doped zinc oxide nanoparticles, Materials Science in Semiconductor Processing 32 (2015) 152-159.
[3] S. Sohila, M. Rajalakshmi, C. Ghosh, A.K. Arora, C. Muthamizhchelvan, Optical and Raman scattering studies on SnS nanoparticles, Journal of Alloys and Compounds 509 (2011) 5843-5847.
[4] F. Jamali-Sheini, R. Yousefi, N. Ali Bakr, M. Cheraghizade, M. Sookhakian, N.M. Huang, Highly efficient photo-degradation of methyl blue and band gap shift of SnS nanoparticles under different sonication frequencies, Materials Science in Semiconductor Processing 32 (2015) 172-178.
[5] S.R. Suryawanshi, S.S. Warule, S.S. Patil, K.R. Patil, M.A. More, Vapor–Liquid–Solid Growth of One-Dimensional Tin Sulfide (SnS) Nanostructures with Promising Field Emission Behavior, ACS Applied Materials & Interfaces 6 (2014) 2018-2025.
[6] F. Jamali-Sheini, R. Yousefi, Field Emission Studies of Au doped ZnO Nanowire Arrays, Journal of Research on Many-body Systems 1 (2012) 19-24.
[7] J. Yang, Z. Li, W. Zhao, C. Zhao, Y. Wang, X. Liu, Controllable synthesis of Ag–CuO composite nanosheets with enhanced photocatalytic property, Materials Letters 120 (2014) 16-19.
[8] U. Jabeen, S.M. Shah, N. Hussain, A. Fakhr e, A. Ali, A. khan, S.U. Khan, Synthesis, characterization, band gap tuning and applications of Cd-doped ZnS nanoparticles in hybrid solar cells, Journal of Photochemistry and Photobiology A: Chemistry 325 (2016) 29-38.
[9] C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and Properties of Nanocrystals of Different Shapes, Chemical Reviews 105 (2005) 1025-1102.
[10] S. Goswami, H.J. Pant, J. Biswal, J.S. Samantray, V.K. Sharma, A. Dash, Synthesis, characterization and application of Au-198 nanoparticles as radiotracer for industrial applications, Applied Radiation and Isotopes 111 (2016) 18-25.
[11] Y. Gui, L. Qian, X. Qian, Hydrothermal synthesis of uniform rock salt (α-) MnS transformation from wurtzite (γ-) MnS, Materials Chemistry and Physics 125 (2011) 698-703.
[12] Y. Zheng, Y. Cheng, Y. Wang, L. Zhou, F. Bao, C. Jia, Metastable γ-MnS Hierarchical Architectures: Synthesis, Characterization, and Growth Mechanism, The Journal of Physical Chemistry B 110 (2006) 8284-8.
[13] Y. Liu, Y. Qiao, W.-X. Zhang, Z. Li, X.-L. Hu, L.-X. Yuan, Y.-H. Huang, Coral-like α-MnS composites with N-doped carbon as anode materials for high-performance lithium-ion batteries, Journal of Materials Chemistry 22 (2012) 24026-240.
[14] G. Pandey, H.K. Sharma, S.K. Srivastava, R.K. Kotnala, γ-MnS nano and micro architectures: Synthesis, characterization and optical properties, Materials Research Bulletin 46 (2011) 1804-1810.
[15] P. Zhao, Q. Zeng, X. He, H. Tang, K. Huang, Preparation of γ-MnS hollow spheres consisting of cones by a hydrothermal method, Journal of Crystal Growth 310 (2008) 4268-4272.
[16] J. Yu, H. Tang, Solvothermal synthesis of novel flower-like manganese sulfide particles, Journal of Physics and Chemistry of Solids 69 (2008) 1342-1345.
[17] D. Fan, H. Wang, Y. Zhang, J. Cheng, B. Wang, H. Yan, Preparation of crystalline MnS thin films by chemical bath deposition,
Materials Chemistry and Physics 80 (2003) 44-47.
[18] F. Zuo, B. Zhang, X. Tang, Y. Xie, Porous metastable γ-MnS networks: biomolecule-assisted synthesis and optical properties, Nanotechnology 18 (2007) 215608.
[19] L. Amirav, E. Lifshitz, Spray-Produced Coral-Shaped Assemblies of MnS Nanocrystal Clusters, The Journal of Physical Chemistry B 110 (2006) 20922-20926.
[20] J. Lu, P. Qi, Y. Peng, Z. Meng, Z. Yang, W. Yu, Y. Qian, Metastable MnS Crystallites through Solvothermal Synthesis, Chemistry of Materials 13 (2001) 2169-2172.
[21] S. Wang, K. Li, R. Zhai, H. Wang, Y. Hou, H. Yan, Synthesis of metastable γ-manganese sulfide crystallites by microwave irradiation, Materials Chemistry and Physics 91 (2005) 298-300.
[22] P.D.F. ICDD, International Centre for Diffraction Data, Powder Diffraction File, Newtown Square, Pennsylvania, USA (1997).
[23] S. Horikoshi, N. Serpone, Microwaves in nanoparticle synthesis: fundamentals and applications, John Wiley & Sons2013.
[24] C.O. Kappe, D. Dallinger, S.S. Murphree, Practical microwave synthesis for organic chemists, John Wiley & Sons2008.
[25] Y. Zhang, H. Wang, B. Wang, H. Yan, M. Yoshimura, Low-temperature hydrothermal synthesis of pure metastable γ-manganese sulfide (MnS) crystallites, Journal of Crystal Growth 243 (2002) 214-217.
[26] R.C. Singh, M.P. Singh, O. Singh, P.S. Chandi, Influence of synthesis and calcination temperatures on particle size and ethanol sensing behaviour of chemically synthesized SnO2 nanostructures, Sensors and Actuators B: Chemical 143 (2009) 226-232.
[27] I. Oidor-Juárez, P. Garcı́a-Jiménez, G. Torres-Delgado, R. Castanedo-Pérez, O. Jiménez-Sandoval, B. Chao, S. Jiménez-Sandoval, Substrate temperature effects on the growth and properties of γ-MnS thin films grown by rf sputtering, Materials Research Bulletin 37 (2002) 1749-1754.
[28] A. Sarkar, A.B. Ghosh, N. Saha, D.N. Srivastava, P. Paul, B. Adhikary, Enhanced photocatalytic performance of morphologically tuned Bi2S3 NPs in the degradation of organic pollutants under visible light irradiation, Journal of Colloid and Interface Science 483 (2016) 49-59.