[1] A. Bialek, I. Cavagna, T. Giardina, E. Mora, E. Silvestri, M. Viale, and A.M. Walczak, Statistical mechanics for natural flocks of birds, Proceeding of the National Academy of Sciences 109 (2012) 4786-4791.
[2] S. Lawrence, C.L. Giles, Accessibility of information on the web, Nature 400 (1999) 107-109.
[3] S.P. Strong, R. Koberle, D.R. Van, R.R. Steveninck, W. Bialek, Entropy and information in neural spike trains, Physical Review Letters 80 (1998) 197-200.
[4] C. Beck, Generalized information and entropy measures in physics, Contemporary Physics 50 (2009) 495-510.
[5] G. Kaniadakis, Statistical mechanics in the contex of special relativity, Physical Review E 66 (2002) 056125-056130.
[6] C. Tsallis, Introduction to Non-extensive Statistical Mechanics, Springer (2009).
[7] T. Byrnes, S. Koyama, K. Yan, Y. Yamamoto, Neural networks using two-component Bose-Einstein condensates, Scientific Reports 3 (2013) 2531-2537.
[8] C. Tsallis, Pssible generalization of Boltzmann-Gibbs statistics, Journal of Statistical Physics 52 (1988) 479-487.
[9] S. Abe, A note on the q-deformation-theoretic aspect of the generalized entropies in nonextensive physics, Physics Letters A 224 (1997) 326-330.
[10] J.J. Hopeld, Neural networks and physical systems with emergent collective computational abilities, Proceeding of the National Academy Sciences 79 (1982) 2554-2558.
[11] D.J. Amit, Modeling Brain Function: The World of Attractor Neural Networks, Cambridge University Press, Cambridge (1989).
[12] R.S. Johal, q calculus and entropy in nonextensive statistical physics, Physical Review E 58 (1998) 4147-4151.
[13] P.T. Landsberg, V. Vedral, Distributions and channel capacities in generalized statistical mechanics, Physics Letters A 247 (1998) 211-217.
[14] G.B. Bagci, T. Oikonomou, Comment on "Third law of thermodynamics as a key test of generalized entropies" Physical Review E 92 (2015) 016103-016108.
[15] E.P. Bento, G.M. Viswanathan, M.G. E. da Luz, R. Silva, Third law of thermodynamics as a key test of generalized entropies, Physical Review E 91 (2015) 022105-022110.
[16] R. Khordad, H.R. Rastegar Sedehi, Application of different entropy formalism in a neural network for novel word learning, The European Physical Journal Plus 130 (2015) 246-255.
[17] R. Khordad, H.R. Rastegar Sedehi, Modeling cancer growth and its treatment by means of statistical mechanics entropy, The European Physical Journal Plus 131 (2016) 291-302.
[18] J.A. Gonzalez, I. Rondon, Cancer and nonextensive statistics, Cancer and nonextensive statistics, Physica A 369 (2006) 645-654.
[19] C. Beck, Non-extensive statistical mechanics and particle spectra in elementary interactions, Physica A 286 (2000) 164-180.
[20] A. Behera, S.F.C. O’Rourke, Comment on "Correlated noise in a logistic growth model, Physical Review E 77 (2008) 013901-013905.
[21] F. Kozusko, Z. Bajzer, Combining Gompertzian growth and cell population dynamics, Mathematical Biosciences 185 (2003) 153-167.
[22] A. Behera, S. F.C. O’Rourke, The effect of correlated noise in a Gompertz tumor growth model, Brazilian Journal Physics 38 (2008) 272-278.
[23] B. Gompertz, On the nature of the function expressive of the law of human mortility, and on a new mode of determining the value of life contingencies, Philosophical Transactions of the Royal Society B 115 (1825) 513-583.
[24] C. Winsor, The Gompertz curve as a growth curve, Proceeding National Academy Sciences USA 18 (1932) 1-8.
[25] B.Q. Ai, X.J. Wang, G.T. Liu, L.G. Liu, Correlated noise in a logistic growth model, Physical Review E 67 (2003) 022903-022909.
[26] D.C. Mei, C.W. Xei, L. Zhang, The stationary properties and the state transition of the tumor cell growth mode, European Physical Journal B 41 (2004) 107-112.
[27] H. Risken, The Fokker-Planck Equation, Springer, Berlin (1996).
[28] C.W. Gardiner, Handbook of Stochastic Methods, Third Edition Springer, Verlag Berlin Heidelberg New York (2004).
[29] D. Hart, E. Schochat, Z. Agur, The growth law of primary breast cancer as inferred from mammography screening trials data, British Journal of Cancer 78 (1998) 382-387.
[30] C.P. Calderon, T.A. Kwenbe, Modeling tumor growth, Mathematical Biosciences 103 (1991) 97-114.