[1] B. Shen,Y. Li, M.Y. Yu, J. Cary,Bubble regime for ion acceleration in a laser-driven plasma, Physical Review E 76 (2007) 055402-055405.
[2] E. Esarey, C.B. Schroeder, W.P. Leemans, Physics of laser-driven plasma-based electron accelerators,
Reviews of Modern Physics 81(3) (2009) 1229–1285.
[3] V. Malka, J. Faure, Y.A. Gauduel, E. Lefebvre, A. Rousse, K.T. Phuoc, Principles and applications of compact laser–plasma accelerators, Nature Physics 4(6) (2008) 447–453.
[4]
S.M. Hooker, Developments in laser-driven plasma accelerators,
Nature Photonics 7 (2013) 775–782.
[6] Z. Najmudin, M. Tatarakis, A. Pukhov, E.L. Clarke, R.J. Clarke, A.E. Dangor, J. Faure, V. Malka, D. Neely, M.I.K. Santala, K. Krushelnick,
Measurements of the Inverse Faraday Effect from Relativistic Laser Interactions with an Underdense Plasma,
Physical Review Letters 87 (2001) 215004-215007.
[7] J. Fuchs, G. Malka, J.C. Adam, F. Amiranoff, S.D. Baton, N. Blanchot, A. Heron, G. Laval, J.L. Miquel, P. Mora, H. Pepin, C. Rousseaux,
Dynamics of Subpicosecond Relativistic Laser Pulse Self-Channeling in an Underdense Preformed Plasma,
Physical Review Letters 80 (1998) 1658-1662.
[9] Z.M. Sheng, J. Meyer-ter-vehn, A. Pukhov, Analytic and numerical study of magnetic fields in the plasma wake of an intense laser pulse, Physics of Plasmas 5 (1998) 3764-3773.
[11] E. Esarey, P. Sprangle, J. Krall, A. Ting, Overview of plasma-based accelerator concepts,
IEEE Transactions on Plasma Sciences 24 (1996) 252-288.
[12] P. Jha, P. Kumar, A.K. Upadhyaya, G. Raj, Electric and magnetic wakefields in a plasma channel, Physical Review Accelerators and Beams 8 (2005) 071301-071306.
[14] V.K. Tripathi, C.S. Liu
, Self‐generated magnetic field in an amplitude modulated laser filament in a plasma,
Physics of Plasmas 1 (1994) 990-992.
[17] S.
Fujioka, Z.
Zhang, K.
Ishihara, K.
Shigemori, Y.
Hironaka, T.
Johzaki, A.
Sunahara, N.
Yamamoto, H.
Nakashima, T.
Watanabe, H.
Shiraga, H.
Nishimura, H.
Azechi, Kilotesla magnetic field due to a capacitor-coil target driven by high power laser
, Scientific Reports 3 (2013) 1170-1176.
[18] A. Pukhov, J. Meyer-ter-Vehn, Laser wake field acceleration: the highly non-linear broken-wave regime, Applied Physics B 74 (2002) 355-361.
[19] I. Kostyukov, A. Pukhov, S. Kiselev, Phenomenological theory of laser-plasma interaction in “bubble” regime, Physics of Plasmas 11 (2004) 5256-5264.
[20] A. Pukhov, S. Gordienko, S. Kiselev, and I. Kostyukov, The bubble regime of laser–plasma acceleration: monoenergetic electrons and the scalability,
Plasma Physics and Controlled Fusion 46 (2004) 179-188.
[23] P. Zobdeh, R.Sadighi-Bonabi, H. Afarideh, Electron trajectory evaluation in laser-plasma interaction for effective output beam, Chinese Physics B 19 (2010) 064210-064214.
[24] R. Sadighi-Bonabi, S.H. Rahmatollahpur, A complete accounting of the monoenergetic electron parameters in an ellipsoidal bubble model, Physics of Plasmas 17 (2010) 033105 033112.
[25] Myung-Hoon Cho, Young-Kuk Kim, and Min Sup Hur, Study of electron trapping by a transversely ellipsoidal bubble in the laser wake-field acceleration, Physics of Plasmas 20 (2013) 093112-093117.
[26] W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, Cs. Tóth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J.-L. Vay, C. G. R. Geddes, E. Esarey, Multi-GeV Electron Beams from Capillary-Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime, Physical Review Letters 113 (2014) 245002-245006.
[27]
Y.F. Li,
D.Z. Li,
K. Huang,
M.Z. Tao,
M.H. Li,
J.R. Zhao,
Y. Ma,
X. Guo,
J.G. Wang,
M. Chen,
N. Hafz,
J. Zhang,
L.M. Chen,Generation of 20 kA electron beam from a laser wakefield accelerator,
Physics of Plasmas 24 (2017) 023108-023114.
[28] M.J.H. Luttikhof, A.G. Khachatryan, F.A. van Goor, K.J. Boller, The effect of the vacuum-plasma transition and an injection angle on electron-bunch injection into a laser wakefield, Physics of Plasmas 14 (2007) 083101 -083109.
[29] A.G. Khachatryan, Trapping, compression, and acceleration of an electron bunch in the nonlinear laser wakefield,
Physical Review E 65 (2002) 046504- 046512.