Synthesis and study of the crystalline properties of aluminum hydroxide nanoparticles and investigation of their application

Document Type : Full length research Paper

Authors

Department of Physics, Faculty of Basic Sciences, Lorestan University, Karram-Abad, Iran

Abstract

Aluminum hydroxide nanoparticles successfully synthesized in an electrochemical cell containing tetramethylammonium chloride as electrolyte and two Al sheets as anode and cathode. In order to study the effect of voltage on crystalline properties of particles, five samples synthesized by applying 7 V, 9 V, 12 V, 15 V, and 18 V. The particles characterized using X-Ray diffraction (XRD) and scanning electron microscope (SEM). XRD patterns clearly approved the formation of aluminum hydroxide with cubic structure and no sign of impurities observed. Based on these results, the sample prepared under 7 V had amorphous structure and the crystal structures of samples improved by increasing the applied voltage. SEM images showed the quasi spherical particles with nanometer size. Based on these images the smallest particles with the mean size of about 9 nm synthesized under 18 V. In the practical part of this study, the removal of nickel and cadmium from water has been investigated by applying 7-18 V on laboratory polluted water and 15 V on Khorram-rood, Kashkan, and Seimareh rivers. The atomic absorption analysis (AAS) results showed the possibility of this method on separation of pollutants from water.
 

Keywords

Main Subjects


 
[1] D. Mishra, S. Anand, R.K. Panda, R.P. Das, Effect of anions during hydrothermal preparation of boehmites, Materials Letters 53(3) (2002) 133-137.‏
[2] G. Scholz, S. Brehme, M. Balski, R. König, E. Kemnitz, Structure and properties of mechanochemically synthesised aluminium hydroxide fluoride phases AlFx(OH)3-x nH2OSolid State Sciences 12 (2010) 1500-1506.
[3] O.V. Bakina,, E.A. Glazkova, N.V. Svarovskaya, A.S. Lozhkomoev, E.G. Khorobraya, S.G. Psakhie, Synthesis of low-size flower-like AlOOH structures, AIP Conference Proceedings 1623 (2014) 35-38.‏
[4] M. Reches, E. Gazit, Casting metal nanowires within discrete self-assembled peptide nanotubes, Science 300(5619) (2003) 625-627.‏
[5] X.S. Fang, C.H. Ye, L.D. Zhang, T. Xie, Twinning-Mediated Growth of Al2O3 Nanobelts and Their Enhanced Dielectric Responses, Advanced Materials 17(13) (2005) 1661-1665.‏
[6] B.E. Yoldas, Alumina gels that form porous transparent Al2O3Journal of Materials Science 10(11) (1975) 1856-1860.‏
[7] B.E. Yoldas, Hydrolysis of aluminium alkoxides and bayerite conversion, Journal of applied chemistry and biotechnology 23(11) (1973) 803-809.‏
[8] S. Musić, Đ. Dragčević, S. Popović, Hydrothermal crystallization of boehmite from freshly precipitated aluminium hydroxide, Materials Letters 40(6) (1999) 269-274.‏
[9] A.F. Dresvyannikov, E.V. Petrova, M.A. Tsyganova, Physical and chemical properties of nano-sized aluminum hydroxide and oxide particles obtained by the electrochemical method, Russian Journal of Physical Chemistry A 84(4) (2010) 642-647.‏
[10] R. Rogojan, E. Andronescu, C. Ghitulica, B.S. Vasile, Synthesis and characterization of alumina nano-powder obtained by sol-gel method, UPB Scientific Bulletin, Series B: Chemistry and Materials Science 73(2) (2011) 67-76.‏
[11] G. Costa Cunha, L.P.C. Romão, Z.S. Macedo, Production of alpha-alumina nanoparticles using aquatic humic substances, Powder technology 254 (2014) 344-351.‏
[12] G.R. Karagedov, N.Z. Lyakhov, Preparation and sintering of nanosized α-Al2O3 powder, Nanostructured materials 11(5) (1999) 559-572.‏
[13] L.M.A. Monzon, K. Ackland, S. Mosivand, M. Venkatesan, J.M.D. Coey, The role of Polyaniline in the Formation of Iron-containing Nanocomposites, Journal of  Nanoparticle  Research 15 (2013) 1-11.
[14] S. Mosivand, L.M.A. Monzon, I. Kazeminezhad, J.M.D. Coey, The Effect of Organics on the Structure and Magnetization of Electro-synthesised Magnetite Nanoparticles, Journal of Nanoparticle Research 15 (2013) 1-11.
[15] S. Mosivand, L.M.A. Monzon, K. Ackland, I.Kazeminezhad, J.M.D. Coey, Structural and Magnetic Properties of Sonoelectrocrystallized Magnetite Nanoparticles, Journal of Physics D: Applied Physics 47 (2014) 1-13.
[16] S. Mosivand, I. Kazeminezhad, Structural and Magnetic Characterization of Electro-crystallized Magnetite Nanoparticles under Constant Current, Materials Research Bulletin 70 (2015) 328–335.
[18] I. Kazeminezhad, S. Mosivand, Phase Transition of Electrooxidized Fe3O4 to γ and α-Fe2O3 Nanoparticles Using Sintering Treatment, Acta Phys. Pol. A 125 (2014) 1210-1214.
[19] S. Mosivand, L.M.A. Monzon, I. Kazeminezhad, J.M.D. Coey, Influence of Growth Conditions on Magnetic and Structural Properties of Magnetite Nanoparticles Electro-crystallized in the Presence of Organic Molecules, International Journal of Molecular Sciences 14 (2013) 10383-10396.
[20] I. Kazeminezhad, A. Sadollakhani, Electrooxidized ZnO nanoparticles, Current Nanoscience 9 (2013) 35-38.
 [21] Zh. Boroun, M.R. Vaezi, G. Kavei, A.A. Youzbashi, I. Kazeminezhad, Electrochemical synthesis of nanostructured nickel oxide powder using nickel as anode, Materials Letters 106 (2013) 175-177.
[22] M. Kardanzadeh, I. Kazeminezhad, S. Mosivand, Electro-synthesis and characterization of TiO2 nanoparticles and their application in removal of congo red from water without UV radiation, Ceramics International 44 (2018) 5652–5659.
[23] S.Z. Shahanshahi, S. Mosivand, Electro‑crystallized SnO2 nanoparticles for river‑water heavy‑metal ion pollutant removal process, Applied Physics A 125 (2019) 1-11.
[24] S. Mosivand, I. Kazeminezhad, A Novel Synthesis Method for Manganese Ferrite Nanopowders: The Effect of Manganese Salt as Inorganic Additive in Electrosynthesis Cell, Ceramics International 41 (2015) 8637–8642.
[25] S. Mosivand, I. Kazeminezhad, Synthesis of Electrocrystallized Cobalt Ferrite Nanopowders by Tuning the Cobalt Salt Concentration, RSC Advances 5 (2015) 14796-14803.
[26] E. Chibowski, A. Szcześ, Magnetic water treatment–A review of the latest approachesChemosphere 203 (2018) 54-67.
[28] L. Joseph, B.M. Jun, J.R.V. Flora, C.M. Park, Y. Yoon, Removal of heavy metals from water sources in the developing world using low-cost materials: A reviewChemosphere229 (2019) 142-159.
 [31] G. Socrates, Infrared and Raman characteristic group frequencies, 3rd edn. Wiley, United Kingdom, (2001).
[32] P. Cubillas, M.W. Anderson, Synthesis Mechanism: Crystal Growth and Nucleation, in book: Zeolites and Catalysis, Synthesis, Reactions and Applications. Vol. 1. Edited by Jiří Čejka, Avelino Corma, Stacey Zones, Copyright 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
 
[33] P.G. Vekilov, The two-step mechanism of nucleation of crystals in solution, Nanoscale 2 (2010) 2346–2357.
 
[34] J.J. De Yoreo, P.G. Vekilov, Principles of Crystal Nucleation and Growth, Reviews in Mineralogy and Geochemistry 54(1) (2003) 57-93.
 
[35] F.C. Meldrum, H. Colfen, Crystallization and formation mechanisms of nanostructures, Nanoscale 2 11 (2010) 2326-7.
 
[36] S. Mosivand, I. Kazeminezhad, The Effect of Current on Structural and Magnetic Properties of Electrocrystalized Magnetite Nanoparticles in The Presence of Ultrasound Waves, Journal of Physics on Many-body Systems 9 (2015) 41-51. DOI:10.22055/jrmbs.2015.11385
 
[37] S. Mosivand, I. Kazeminezhad, S. Piri Fathabad, Easy, fast, and efficient removal of heavy metals from laboratory and real wastewater using electrocrystalized iron nanostructures, Microchemical Journal 146 (2019) 534–543.
 
[38] S. Mosivand, L.M.A. Monzon, I. Kazeminezhad, A. Kumar, J.M.D. Coey, Pulsed electrochemical and electroless techniques for efficient removal of Sb and Pb from water, Environmental Science Water Research & Technology 4 (2018) 2179–2190.
 
[39] S. Mosivand, I. Kazeminezhad, Magnetite nanoparticles functionalized with polypyrrole by pulsed sono-electrocrystallization and their applications for water treatment, Journal of Materials Science: Materials in Electronics 29 (2018) 12466–12476.
 
[40] I. Kazeminezhad, S. Mosivand, Elimination of copper and nickel from wastewater by electrooxidation method, Journal of Magnetism and Magnetic Materials 422 (2017) 84–92.
 
[41] P. Xu, G. M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M. H. Zhao, C. Lai, Z. Wei, C. Huang, G. X. Xie and Z.F. Liu, Use of iron oxide nanomaterials in wastewater treatment: A reviewScience of The Total Environment 424 (2012) 1-10.
 
[42] K. Yogesh Kumar, T.N. Vinuth Raj, S. Archana, S.B. Benaka Prasad, Sharon Olivera, H.B. Muralidhara, SnO2 nanoparticles as effective adsorbents for the removal of cadmium and lead from aqueous solution: Adsorption mechanism and kinetic studies, Journal of Water Process Engineering 13 (2016) 44–52.
 
[43] G. Gangadhar, U. Maheshwari, S. Gupta, Application of Nanomaterials for the Removal of Pollutants from Effluent Streams, Nanoscience & Nanotechnology-Asia 2 (2012) 140-150.
 
[44] K. Garavand, S.  Mosivand, The Effect of Electro-crystallizationVoltage on Structural and Optical Properties of Nickel Oxide Nanoparticles, 15th Conference on Condensed Matter, The physics Society of Iran (2019) 455-458.
 
[45] F. Bagheri, S.  Mosivand, The effect of electrocrystallization voltage on the structural properties of nickel hydroxide nanoparticles, 3rd National Conference on Nanostructures Nanoscience and Nanoengineering (2019) 1-8.
www.kashannanoconf.ir