The Theoretical Study of the Effect of Number of Substitution of Si and Ge in Bowl C20 on the Thermoelectric Properties

Document Type : Full length research Paper


1 Department of Chemistry, Faculty of Science,Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran

2 Department of Physic, Faculty of Science, Yadegar-e-Imam Khomeini (RAH) Shahr-e- Rey Branch, Islamic Azad University, Tehran, Iran


Today there is a heightened interest in the field of theoretical study of thermoelectric properties due to widespread application of thermoelectric materials. In this research, the Seebeck coefficient (S) and Merit Factor (Z) are calculated for C20-nGen and C20-nSin (n=1-5) bowl structures and the most suitable thermoelectric systems are selected. The quantum calculations are done at the level of LSDA/6-31G of Density Functional Theory (DFT). As the temperature increases from 200k to 400k, the seebeck coefficients of these structures decrease for p-type semiconductors and increase for n-type semiconductors. The maximum values of merit factor are achieved for C19Ge1   equal to 1.78at 278k and for C17Si3 equal to 1.03 at 400k. Therefore, the structures of p-type of C19Ge1 and n-type of C17Si3 with more temperature difference are selected as the best thermoelectric systems. The structures of C20-nGen with n=1,2,5 as the both n-type and p-type semiconductors and C20-nSin with n=3 for n-type and also n=1,3 for p-type have Z>1 and are suitable for thermoelectric systems.


Main Subjects

[1] M. Zare Jafar Abadi, H. Ramin, R. Hoseini Abardeh, Optimization of Segmented Thermoelectric Generator and Calculation of Performance, AmirKabir Journal of Mechanical Engineering 45 (2013) 83-91. DOI: 10.22060/MEJ.2013.8
[2] B.C. Sales, D. Mandrus, R.K. Williams, Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials, Science 72 (1996)
[3] B.X. Chen, J.H. Xu, C. Uher, D.T. Morelli. G.P. Meisner, J.P. Fleurial, T. Caillat, A. Borshchebskyet, Low- temperature transport properties of the filled skutterudites CeFe4−x Cox Sb12S, Physical Review B 55 (1997) 1476.
[4] M. Lee, L. Viciu, L. Li, Y. Wang, M.L. Foo, S. Watauchi, R.A. Pascal, R.J. Cava, N.P. Ong, Large enhancement of the thermopower in NaxCoO2 at high Na doping, Nature Materials 5 (2006) 537–540. 
[5] Y. Wang, N.S. Rogado, R.J. Cava, N.P. Ong,  Spin entropy as the likely source of enhanced thermopower in Na(x)Co2O4, Nature 423 (2003) 425-428.
 [6] J.W.G. Bos, H.W. Zandbergen, M.H. Lee, N.P. Ong, R.J. Cava, Structures and thermoelectric properties of the infinitely adaptive series (Bi2)m(Bi2Te3)n, Physical Review B 75 (2007) 195203.
[7] R.T. Littleton, T.M. Tritt, C.R. Feger, J. Kolis, M.L. Wilson, M. Marone, Effect of Ti substitution on the thermoelectric properties of the pentatelluride materials M1−xTi xTe5  (M=Hf, Zr), Journal of Applied Physics Letters 72 (1998) 2056-2058.
[8] A. Saramat, G. Svensson, A.E.C. Palmqvist, C. Stiewe, E. Mueller, D. Platzek, S.G. Williams, D.M. Rove, J.D. Bryan, G.D. Stucky, Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge30, Journal of Applied Physics 99 (2006) 023708.
[9] S.H. Yang, T.J. Zhu, T. Sun, J. He, S.N. Zhang, X.B. Zhao, Nanostructures in high-performance (GeTe)(x)(AgSbTe(2))(100-x) thermoelectric materials, Nanotechnology 19 (2008) 245707. DOI: 10.1088/0957-4484/19/24/245707
[10] h. Khalatbari  Impact of increasing the number of molecules in thermopower properties of C20 molecule,Journal of Research on Many-body Systems 8 (2018)97-103.
[11] F. Lin, E. Srensen, C. Kallin, A.J. Berlinsky, C20, the Smallest Fullerene, Handbook of Nanophysics: Clusters and Fullerenes, Taylor & Francis Publisher, CRC Press, (2009).
[12] M. Alcamí, G. Sánchez, S. Díaz-Tendero, Y.Wang, F. Martín, Structural patterns in fullerenes showing adjacent pentagons: C20 to C72, Journal of nanoscience and nanotechnology 7(2007) 1329-1338.
[14] M. Scharber, D. M€uhlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design Rules for Donor Bulk Heterojunction Solar Cells-Towards 10% Energy-Conversion Efficiency, Advanced Materials 18 (2006) 789-794.
[19] H. Rahnama Ali Abad, S. Ramezani, The optoelectronic and thermoelectric spectrums of DyMnO3 by DFT, The Journal of Quantum Chemistry And Spectroscopy 5 (2015) 25-34.
[20] F. Wu, W. Wang, X. Hu, M. Tang, Thermoelectric properties of I-doped n-type Bi2Te3-based material prepared by hydrothermal and subsequent hot pressing, Progress in Natural Science: Materials International 27 (2017) 203-207.
[23] C. Godart, A.P. Gonçalves, E.B. Lopes, B. Villeroy, Role of Structures on Thermal Conductivity in Thermoelectric Materials, Properties and Applications of Thermoelectric Materials, NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB), (2008).
[24] A. Bensmain, H. Tayoub, B. Zebntout, Z. Benamara, Investigation of Performance Silicon Heterojunction Solar Cells Using a-Si: H or a- SiC: H at Emitter Layer Through AMPS-1D Simulations, Sensors & Transducers 27 (2014) 82-86.
[25] N. Memarian, M.K. Omrani, M. Minbashi, Improving the heterojunction silicon solar cell efficiency by using GaP intrinsic layer, Journal of Research on Many-body Systems 7 (2017) 103-112.
[26] A. Nozariasbmarz, A. Agarwal, Z.A. Coutant, Thermoelectric silicides: A review, Japanese Journal of Applied Physics 56 (2017)05DA04. DOI: 10.7567/JJAP.56.05DA04
[27] M. Thesberg, H. Kosina, N. Neophytou, On the Lorenz number of multiband materials, Phys. Rev. B 95 (2017) 125206 .
[29] S. Shimizu, J. Shiogai, N. Takemori, S. Sakai, H. Ikeda, R. Arita, T. Nojima, A. Tsukazaki, Y.Iwasa, Giant thermoelectric power factor in ultrathin FeSe superconductor, Nature Communications 10 (2019) 825.
[31] S. Li, X. Li, Z. Ren, Q. Zhang, Recent progress towards high performance of tin chalcogenide thermoelectric materials, Journal of Materials Chemistry.A6 (2018)2432-2448.  
[32] L.D. Hicks, M.S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor, Physical Review B 47 (1993) 16631.
[33] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature 413 (2001) 597-602.
[34] D. Vashaee, A. Shakouri, Electronic and thermoelectric transport in semiconductor and metallic superlattices, Journal of Applied Physics 95 (2004)1233.  
[35] G. Zeng, X. Fan, C. LaBounty, E. Croke, Y. Zhang, J. Christofferson, D. Vashaee, A. Shakouri, J.E. Bowers, Thermal Nanosystems and Nanomaterials, MRS Proc, (2003).
[36] S. Tada, Y. Isoda, H. Udono, H. Fujiu, S. Kumagai, Y. Shinohara, Thermoelectric Properties of p-Type Mg2Si0.25Sn0.75 Doped with Sodium Acetate and Metallic Sodium, J. Electron. Mater 43 (2014)1580.
[37] M.M. Wienk, M. Turbiez, J. Gilot, R.A.J.Janssen, Narrow- Bandgap Diketo-pyrrolopyrrole Polymer Solar Cells: The Effect of Processing on the Performance. Advanced Materials 20 (2008) 2556-2560.
[39] H. Aryani Mohamadieh, M.A. Ghazee, M. Izadi Fard, Study of magnetic and electronic properties of NdMnO3 manganite using LSDA and LSDA+U approximations, Journal of Research on Many-body Systems 3 (2013) 25-37.
[40] M. Dadsetani, R. Momeni Feili, A. Beiranvand, Electronic and optical properties of Cu2-II-IV-VI4(II=Zn, Cd; IV=Ge, Sn; VI=S, Se, Te) quaternary chalcogenides using GGA and mBJ-GGA approximations, Journal of Research on Many-body Systems 3 (2013) 9-24.
[41] H. Salehi, A. Abdollahi, Calculation of electronic and optical properties of Na2S in the orthorombic phase, Journal of Research on Many-body Systems 7 (2017)145-152.       
[42] M. Qasemnazhand, F. Marsusi, Theoretical Study of Opto-Electronic properties of Silafulleranes Using Density Functional Theory, Journal of Research on Many-body Systems 7 15 (2017) 77-87.
[43] S.M. Sze, Kwok K. Ng, Physics of Semiconductor Devices, John wiley and Sons,(2007).
[44] F.R. Nikmaram, M. Gholizadeh Arashti, S. Ketabi, Study of the Electronic Properties of C20-nSin and C20-nGen (n=1-5) nano structures by the approach of Density Functional Theory, Journal of Research on Many-body Systems 8 19 (2018) 206-217.
[46] K.P. Pipe, R.J. Ram, A. Shakouri, Bias-dependent Peltier coefficient and internal cooling in bipolar devices, Physical Review B 66 (2002) 125316.