[1] A.K. Geim, K.S. Novoselov, The rise of graphene,Nature Materials 6 (2007) 183–191.
[2] M.I. Katsnelson, Graphene: carbon in two dimensions, Materialstoday 10 (2007) 20-27.
[3] Y. Wu, W. Xia, W. Gao, F. Jia, P. Zhang, W. Ren, Quasiparticle electronic structure of honeycomb C3N: from monolayer to bulk, 2D material 6 (2018) 15-18.
[4] M. Bagheri, Electrical and mechanical properties of a fully hydrogenated two-dimensional polyaniline sheet, Computational Materials Science 153 (2018) 126-133.
[5] M. Bagheri, S. Izadi, Polyaniline (C3N) nanoribbons: Magnetic metal, Semiconductor, and Half-Metal, Applied physics 124 (2018) 84304.
[6] H.J. Xiang, B. Huang, Z.Y. Li, S.H. Wei, J.L. Yang, X.G. Gong, Ordered Semiconducting Nitrogen-Graphene Alloys, Physical ReviewX 2 (2012) 11003.
[7] B. Mortazavi, Ultra high stiffness and thermal conductivity of graphene like C3N, Carbon 118(2017) 25-34.
[8] S. Kumar, S. Sharma, V. Babar, U. Schwingenschlogl, Ultralow lattice thermal conductivity in monolayer C3N as compared to graphene, Materials ChemistryA 5(2017) 407-411.
[9] D. Wang, Y. Bao, T. Wu, S. Gan, D. Han, L. Niu, First-principles study of the role of strain and hydrogenation on C3N, Carbon 134 (2018) 22-28.
[10] H. Hadipour, E. Sasıoglu, F. Bagherpour, C.Friedrich, S. Blugel, I. Mertig2, Screening of the long-range Coulomb interaction in graphene nanoribbons: Armchair versus zigzag edges Physical Review B 98 (2018) 205123.
[11] E. Sasıoglu, H. Hadipour, C. Friedrich, S. Blugel, I. Mertig, Strength of effective Coulomb interactions and origin of ferromagnetism in hydrogenated graphene, Physical Review B 95 (2017) 60408.
[12] H. Hadipour, Screening of Coulomb interaction and π magnetism in defected graphene, Physical Review B 99 (2019) 75102.
[13] F. Aryasetiawan, M. Imada, A. Georges,G.Kotliar, S. Biermann, A.I. Lichtenstein, Frequency-depenent local interactions and loe-energy effective models from electronic structure calculations, Physical Review, B 70 (2004) 195104.
[14] S. Yang, W. Li, C. Ye, G. Wang, H. Tian, C. Zhu, P. He, G. Ding, X. Xie, Y. Liu, Y. Lifshitz, S. Lee, Z. Kang, M. Jiang, C3N —A2D Crystalline, Hole-Free, Tunable-Narrow-Bandgap Semiconductor with Ferromagnetic, Advanced Material 29 (2017) 1605625.
[15] J. van den Brink, G.A. Sawatzky, Non-conventional screening of the Coulomb interaction in low-dimensional and finite-size system, Europhysics Letters 50 (2000) 447-453.
[16] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradiant Approximaion Made Simple, Physical Review Letters 78 (1997) 3865.
[17] C. Friedrich, S. Bl¨ugel, A. Schindlmayr, Efficient implementation of the GW approximation within the all electron FLAPW method, Physical Review B 81 (2010) 125102.
[18] D.K. Singh, A. Thamizhavel, J.W. Lynn, S.K. Dhar, T. Hermann, Multiple magnetic structures of correlated Ce ions in intermetallic CeAu2Ge2, Physical Review B 86 (2012) 60405.
[19] M. Makaremi, B. Mortazavi, C. Veer Singh. Adsorption of Metallic, Metalloidic, and Nonmetallic Adatoms on Two-Dimensional C3N, Physical Chemistry121(2017) 575-583.
[20] F. Freimuth, Y. Mokrousov, D. Wortmann, S. Heinze, S. Blugel. Maximally localized Wannier functions within the FLAPW formalism, Physical Review B 78 (2008) 035120.
[21] Q. Wei, Q. Zhang, H. Yan, M. Zhang, Cubic C3N: A New Superhard Phase of Carbon-Rich Nitride, Materials 9 (2016) 840-846.