[1] W. Hoffelner, Materials for nuclear plants : from safe design to residual life assessments, Springer, )2013(.
##[2] G.S. Was, Fundamentals of Radiation Materials Science, Springer Berlin Heidelberg, Berlin, Heidelberg, (2007).
##[3] S.J. Zinkle, J.T. Busby, Structural materials for fission & fusion energy, Mater. Today. 12 (2009) 12–19.
##[4] International Atomic Energy Agency, Assessment and management of ageing of major nuclear power plant components important to safety : PWR pressure vessels, International Atomic Energy Agency,( 2007).
##[5] International Atomic Energy Agency, Integrity of reactor pressure vessels in nuclear power plants : assessment of irradiation embrittlement effects in reactor pressure vessel steels, International Atomic Energy Agency, (2009).
##[6] W.L. Server, R.K. Nanstad, Reactor pressure vessel (RPV) design and fabrication: the case of the USA, in: Irradiat. Embrittlement React. Press. Vessel. Nucl. Power Plants, Elsevier, (2015) 3–25.
##[7] Y. Tanaka, Reactor pressure vessel (RPV) components: processing and properties, in: Irradiat. Embrittlement React. Press. Vessel. Nucl. Power Plants, Elsevier, (2015) 26–43.
##[8] M. Brumovsky, WWER-type reactor pressure vessel (RPV) materials and fabrication, in: Irradiat. Embrittlement React. Press. Vessel. Nucl. Power Plants, Elsevier, (2015) 44–54.
##[9] M. Brumovsky, Embrittlement of reactor pressure vessels (RPVs) in WWER-type reactors, in: Irradiat. Embrittlement React. Press. Vessel. Nucl. Power Plants, Elsevier, (2015) 107–131.
##[10] M. Tomimatsu, T. Hirota, T. Hardin, P. Todeschini, Embrittlement of reactor pressure vessels (RPVs) in pressurized water reactors (PWRs), in: Irradiat. Embrittlement React. Press. Vessel. Nucl. Power Plants, Elsevier, (2015) 57–106.
##[11] M.F. McGuire, Stainless steels for design engineers, ASM International, (2008).
##[12] P. Marshall, Austenitic stainless steels : microstructure and mechanical properties, Elsevier Applied Science, (1984).
##[13] M. Kaladhar, K.V. Subbaiah, C.H.S. Rao, Machining of austenitic stainless steels - a review, International Journal of Machining and Machinability of Materials 12 (2012) 178.
##[14] P.J. Maziasz, J.T. Busby, Properties of Austenitic Steels for Nuclear Reactor Applications, Journal of Nuclear Materials (2012) 267–283.
##[15] Z.X. Grujicic M, Analysis of Fe-Ni-Cr-N austenite using the Embedded-Atom Method, Calphad 17 (1993) 383–413.
##[16] Z.X. Grujicic M, Atomistic simulation of thermally activated glide of dislocations in Fe-Ni-Cr-N austenite, Materials Science and Engineering A 190 (1995) 87–98.
##[17] M. GRUJICIC, Atomistic simulation of dislocation core structure and dynamics in Fe–Ni–Cr–N austenite, Journal of Materials Science 32 (1997) 1749–1757.
##[18] A. V. Bakaev, D.A. Terent’ev, E.E. Zhurkin, P.Y. Grigor’ev, Molecular dynamics simulation of the interaction of dislocations with radiation-induced defects in Fe-Ni-Cr austenitic alloys, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 7 (2013) 211–217.
##[19] A. V. Bakaev, D.A. Terentyev, P.Y. Grigorev, E.E. Zhurkin, Atomistic simulation of the interaction between mobile edge dislocations and radiation-induced defects in Fe-Ni-Cr austenitic alloys, , Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 8(2014) 220–228.
##[20] A. V. Bakaev, D.A. Terentyev, P.Y. Grigor’ev, E.E. Zhurkin, Interaction between mobile dislocations and perfect dislocation loops in Fe-Ni-Cr austenitic alloy systems, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 9 (2015) 290–299.
##[21] B.A. Terentyev D, Interaction of a screw dislocation with Frank loops in Fe–10Ni–20Cr alloy, Journal of Nuclear Materials 442 (2013) 208–217.
##[22] K. Tong, F. Ye, M. Gao, M.K. Lei, C. Zhang, Interatomic potential for Fe–Cr–Ni–N system based on the second nearest-neighbor modified embedded-atom method, Molecular Simulation 42 (2016) 1256–1262.
##[23] G. Bonny, D. Terentyev, R.C. Pasianot, S. Poncé, A. Bakaev, Interatomic potential to study plasticity in stainless steels: the FeNiCr model alloy, Modelling and Simulation in Materials Science and Engineering 19 (2011).
##[24] G. Bonny, N. Castin, D. Terentyev, Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy, Modelling and Simulation in Materials Science and Engineering 21 (2013).
##[25] S. Jalili, Computer simulations (Molecular Dynamics & Monte Carlo) second edition, K. N. Toosi University of technology (2011).
##[26] B.J. Alder, T.E. Wainwright, Studies in Molecular Dynamics. I. General Method, Journal of Chemical Physics 31 (1959) 459–466.
##[27] A. Rahman, Correlations in the Motion of Atoms in Liquid Argon, Phys. Rev. 136 (1964) A405–A411.
##[28] J.J. Adams, D.S. Agosta, R.G. Leisure, H. Ledbetter, Elastic constants of monocrystal iron from 3 to 500 K, Journal of Applied Physics 100 (2006) 113530.
##[29] N.T. Hai, Elastic modulus of F.C.C. and B.C.C crystals investigated by a statistical moment method at low temperature range,
International Atomic Energy Agency (IAEA), 36 (2004).
##[30] D. Su, Y.-L. He, J.-Q. Liu, X.-G. Lu, Establishment of the Elastic Property Database of Fe-base Alloys, in: Procceeding The First International Conference on Information Sciences, Machinery, Materials and Energy (2015).
##[31] S.M. Rassoulinejad-Mousavi, Y. Mao, Y. Zhang, Evaluation of copper, aluminum, and nickel interatomic potentials on predicting the elastic properties, Journal of Applied Physics 119 (2016).
##[32] F. Luo, X. Chen, L. Cai, Q.W.-J.A.M. Sci, U. 2011, Thermoelastic properties of nickel from molecular dynamic simulations, Journal of Atomic and Molecular Sciences 2 (2011) 10–19.
##[33] A. Teklu, H. Ledbetter, S. Kim, L.A. Boatner, M. McGuire, V. Keppens, Single-crystal elastic constants of Fe-15Ni-15Cr alloy, Metallurgical and Materials Transactions A 35 (2004) 3149–3154.
##[34] G. Bonny, R.C. Pasianot, D. Terentyev, L. Malerba, Iron chromium potential to model high-chromium ferritic alloys, Philosophical Magazine 91 (2011) 1724–1746.
##[35] G. Bonny, R.C. Pasianot, L. Malerba, Fe–Ni many-body potential for metallurgical applications, Modelling and Simulation in Materials Science and Engineering 17 (2009).
##[36] K.C. Ryoo D, Kang N, Effect of Ni content on the tensile properties and strain-induced martensite transformation for 304 stainless steel, Materials Science and Engineering A 528 (2011) 2277–2281.
##[37] J. Byggmästar, F. Granberg, A. Kuronen, K. Nordlund, K.O.E. Henriksson, Tensile testing of Fe and FeCr nanowires using molecular dynamics simulations, Journal of Applied Physics 117 (2015).
##[38] S.G. Mao W, Campbell A, Heinz D, Phase relations of Fe–Ni alloys at high pressure and temperature, Physics of the Earth and Planetary Interiors 155 (2006) 146–151.
##[39] W.G. Nöhring, W.A. Curtin, Thermodynamic properties of average-atom interatomic potentials for alloys, Modelling and Simulation in Materials Science and Engineering 24 (2016).