Investigation of Phosphine gas Adsorption to SiC and BC3 Nanotubes using Density Functional Theory

Document Type : Full length research Paper

Authors

1 Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran

2 Department of Electrical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran

Abstract

Phosphine (PH3) is a toxic and harmful gas and is released by the reaction of aluminum phosphide or rice pill in the presence of water, water vapor or stomach acid. Poisoning caused by phosphine is more suicidal and two thirds of the poisoned ones die. In this paper, density functional theory has been used to investigat the structural and electronic properties of (10,0) BC3 and SiC nanotube. The PH3 molecule has been first placed at the equilibrium distance which is about the sum of atomic radius of B/C/Si of nanotube and P/H of phosphine molecule, inside and outside the nanotube from both H and P atom sides. Then the structure has been completely relaxed and the electronic calculations have been performed on relaxed structures. Considerable alternations are observed in electronic properties of BC3 nanotube which show that this nanotube is potentially a good candidate for detecting and adsorbing PH3 molecules. Partial densities of state calculations were also performed to find the origin of each adsorption.

Keywords

Main Subjects


[1] F. Shiri, F. Kalantari Fotooh, M.H. Mosslemin, R. Mohebat, H2S adsorption on pristine and metal-decorated (8, 0) SWCNT: a first principle study, Journal of molecular modeling. 27 (2021) 143-150. https://doi.org/10.1007/s00894-021-04761-w
[2] F. Kalantari Fotooh, M. Nayeri, Methane adsorption on the surface of metal (Fe, Ni, Pd) decorated SWCNT: A density functional theory (DFT) study, Surface Science. 713 (2021) 121913-121920. https://www.sciencedirect.com/science/article/pii/S0039602821001175
[3] C. Guo, J. Ouyang, H. Shin, J. Ding, Z. Li, F. Lapointe, J. Lefebvre, A.J. Kell, P.R.L. Malenfant, Enrichment of Semiconducting Single-Walled Carbon Nanotubes with Indigo-Fluorene-Based Copolymers and Their Use in Printed Thin-Film Transistors and Carbon Dioxide Gas Sensors, ACS Sensors. 5 (2020) 2136-2145. https://doi.org/10.1021/acssensors.0c00764
[4] A. Aghashiri, F.K. Fotooh, S. Hashemian, Density functional calculations of nickel, palladium and cadmium adsorption onto (10,0) single-walled carbon nanotube, Journal of molecular modeling. 25 (2019) 185. https://doi.org/10.1007/s00894-019-4062-z
[5] M. Bezi Javan, dsorption of CO and NO molecules on SiC nanotubes and nanocages: DFT study, Surface Science. 635 (2015) 128-142.
[6] A. Soltani, A.A. Peyghan, Z. Bagheri, H2O2 adsorption on the BN and SiC nanotubes: A DFT study, Physica E: Low-dimensional Systems and Nanostructures. 48 (2013) 176-180. http://www.sciencedirect.com/science/article/pii/S138694771300009X
[7] E. Masumian, S.M. Hashemianzadeh, A. Nowroozi, Hydrogen adsorption on SiC nanotube under transverse electric field, Physics Letters A. 378 (2014) 2549-2552. http://www.sciencedirect.com/science/article/pii/S0375960114006707
[8] A. Fissel, B. Schröter, W. Richter, Low‐temperature growth of SiC thin films on Si and 6H–SiC by solid‐source molecular beam epitaxy, Applied Physics Letters. 66 (1995) 3182-3184. https://aip.scitation.org/doi/abs/10.1063/1.113716
[9] M. Andersson, R. Pearce, A. Lloyd Spetz, New generation SiC based field effect transistor gas sensors, Sensors and Actuators B: Chemical. 179 (2013) 95-106. http://www.sciencedirect.com/science/article/pii/S0925400512013688
[10] M.A. Kazi, K.R. Asok, A hybrid density functional study of zigzag SiC nanotubes, Nanotechnology. 18 (2007) 495706. http://stacks.iop.org/0957-4484/18/i=49/a=495706
[11] M. Zhao, Y. Xia, F. Li, R.Q. Zhang, S.T. Lee, Strain energy and electronic structures of silicon carbide nanotubes: Density functional calculations, Physical Review B. 71 (2005) 085312. https://link.aps.org/doi/10.1103/PhysRevB.71.085312
[12] M. Menon, E. Richter, A. Mavrandonakis, G. Froudakis, A.N. Andriotis, Structure and stability of SiC nanotubes, Physical Review B. 69 (2004) 115322. https://link.aps.org/doi/10.1103/PhysRevB.69.115322
[13] X.-H. Sun, C.-P. Li, W.-K Wong, N.-B. Wong, C.-S. Lee, S.-T. Lee, B.-K. Teo, Formation of Silicon Carbide Nanotubes and Nanowires via Reaction of Silicon (from Disproportionation of Silicon Monoxide) with Carbon Nanotubes, Journal of the American Chemical Society. 124 (2002) 14464-14471. https://doi.org/10.1021/ja0273997
[14] M. Rostam, B. Somayeh, C. Raad, Ab initio density functional theory investigation of crystalline bundles of polygonized single-walled silicon carbide nanotubes, Journal of Physics: Condensed Matter. 20 (2008) 465214. http://stacks.iop.org/0953-8984/20/i=46/a=465214
[15] F. Cao, X. Xu, W. Ren, C. Zhao, Theoretical Study of O2 Molecular Adsorption and Dissociation on Silicon Carbide Nanotubes, The Journal of Physical Chemistry C. 114 (2010) 970-976. https://doi.org/10.1021/jp910025y
[16] G. Mpourmpakis, G.E. Froudakis, G.P. Lithoxoos, Samios J., SiC Nanotubes:  A Novel Material for Hydrogen Storage, Nano Letters. 6 (2006) 1581-1583. https://doi.org/10.1021/nl0603911
[17] J.-m. Jia, S.-p. Ju, D.-n. Shi, K.-f. Lin, CO adsorption on a zigzag SiC nanotube: effects of concentration density and local torsion on transport, Journal of Nanoparticle Research. 15 (2013) 1977.
[18] R.Q. Wu, M. Yang, Y.H. Lu, Y.P. Feng, Z.G. Huang, Q.Y Wu., Silicon Carbide Nanotubes As Potential Gas Sensors for CO and HCN Detection, The Journal of Physical Chemistry C. 112 (2008) 15985-15988. https://doi.org/10.1021/jp804727c
[19] G. Gao, H.S. Kang, First Principles Study of NO and NNO Chemisorption on Silicon Carbide Nanotubes and Other Nanotubes, Journal of Chemical Theory and Computation. 4 (2008) 1690-1697. https://doi.org/10.1021/ct800273c
[20] Z. Mahdavifar, M. Haghbayan, Theoretical investigation of pristine and functionalized AlN and SiC single walled nanotubes as an adsorption candidate for methane, Applied Surface Science. 263 (2012) 553-562. http://www.sciencedirect.com/science/article/pii/S0169433212016509
[21] M.D. Ganji, N. Seyed-aghaei, M.M. Taghavi, M. Rezvani, F. Kazempour, Ammonia Adsorption on SiC Nanotubes: A Density Functional Theory Investigation, Fullerenes, Nanotubes and Carbon Nanostructures. 19 (2011) 289-299. https://doi.org/10.1080/15363831003721740
[22] J.B.d. Oliveira, R.J. Baierle, R.H. Miwa, Benzene adsorption and the encapsulation processes in SiC nanotubes, Journal of Applied Physics. 112 (2012) 023702. https://aip.scitation.org/doi/abs/10.1063/1.4737135
[23] D. Golberg, Y. Bando, L. Bourgeois, K. Kurashima, T. Sato, Large-scale synthesis and HRTEM analysis of single-walled B- and N-doped carbon nanotube bundles, Carbon. 38 (2000) 2017-2027. http://www.sciencedirect.com/science/article/pii/S0008622300000580
[24] D. Golberg, Y. Bando, W. Han, K. Kurashima, T. Sato, Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction, Chemical Physics Letters. 308 (1999) 337-342. http://www.sciencedirect.com/science/article/pii/S0009261499005916
[25] G.G. Fuentes, E. Borowiak-Palen, M. Knupfer, T. Pichler, J. Fink, L. Wirtz, A. Rubio, Formation and electronic properties of ${text{BC}}_{3}$ single-wall nanotubes upon boron substitution of carbon nanotubes, Physical Review B 69 (2004) 245403. https://link.aps.org/doi/10.1103/PhysRevB.69.245403
[26] Q. Wang, L.-Q. Chen, J.F. Annett, Stability and charge transfer of ${mathrm{C}}_{3}$B ordered structures, Physical Review B. 54 (1996) R2271-R2275. https://link.aps.org/doi/10.1103/PhysRevB.54.R2271
[27] E.J. Mele, J.J. Ritsko, Electronic excitations in boron-doped graphite, Physical Review B. 24 (1981) 1000-1005. https://link.aps.org/doi/10.1103/PhysRevB.24.1000
[28] Z. Weng-Sieh, K. Cherrey, N.G. Chopra, X. Blase, Y. Miyamoto, A. Rubio, M.L. Cohen, S.G. Louie, A. Zettl, R. Gronsky, Synthesis of ${mathrm{B}}_{mathit{x}}$${mathrm{C}}_{mathit{y}}$${mathrm{N}}_{mathit{z}}$ nanotubules, Physical Review B. 51 (1995) 11229-11232. https://link.aps.org/doi/10.1103/PhysRevB.51.11229
[29] A.A. Peyghan, M. Noei, Fluorination of BC3 nanotubes: DFT studies, J Mol Model. 19 (2013) 3941-3946. https://doi.org/10.1007/s00894-013-1935-4
[30] A.A. Peyghan, Bagheri Z., Electronic response of BC3 nanotube to CS2 molecules: DFT studies, Computational and Theoretical Chemistry. 1008 (2013) 1-7. http://www.sciencedirect.com/science/article/pii/S2210271X12006470
[31] S. Jalili, M. Akhavan, J. Schofield, Electronic and Structural Properties of BC3 Nanotubes with Defects, The Journal of Physical Chemistry C. 116 (2012) 13225-13230. https://doi.org/10.1021/jp303184q
[32] A.R. Moosavi-zare, M. Abdolmaleki, H. Goudarziafshar, H. Soleymanabadi, Adsorption behavior of amphetamine on the inorganic BC3 nanotube and nanosheet: DFT studies, Inorganic Chemistry Communications. 91 (2018) 95-101. https://www.sciencedirect.com/science/article/pii/S1387700318301539
[33] S.C. Chen, I.Y. Chen, Y.H. Ho, M.F. Lin, Optical properties of BC3 nanotubes, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 24 (2006) 46-49. https://avs.scitation.org/doi/abs/10.1116/1.2138721
[34] A. Ahmadi Peyghan, M. Bigdeli Tabar, J. Kakemam, NH3 on a BC3 nanotube: Effect of doping and decoration of aluminum, Journal of molecular modeling. 19 (2013).
[35] W. Odling, A Course of Practical Chemistry Arranged for the Use of Medical Students, Longmans, Green and Co., London, 1865.
[36] S. Singh, J.B. Dilawari, R. Vashist, H.S. Malhotra, B.K. Sharma, Aluminium phosphide ingestion, British medical journal (Clinical research ed.). 290 (1985) 1110-1111. https://www.ncbi.nlm.nih.gov/pubmed/3921126
[37] J.E. Amoore, E. Hautala, Odor as an ald to chemical safety: Odor thresholds compared with threshold limit values and volatilities for 214 industrial chemicals in air and water dilution, Journal of Applied Toxicology. 3 (1983) 272-290. https://onlinelibrary.wiley.com/doi/abs/10.1002/jat.2550030603
[38] P. Gholamkhasi, N. Molaei, M. Noei, M. Rashidiani, Phosphine Detection by AlN Nanotube: DFT studies, Indian Journal of Fundamental and Applied Life Sciences. 4 (2014) 203-210.
[39] M.S. Khan, A. Srivastava, R. Chaurasiya, M.S. Khan, P. Dua, NH3 and PH3 adsorption through single walled ZnS nanotube: First principle insight, Chemical Physics Letters. 636 (2015) 103-109. http://www.sciencedirect.com/science/article/pii/S0009261415005515
[40] S. Mohajeri, M. Noei, A.A. Salari, Z. Hoseini, N. Ahmadaghaei, N. Molaei, Adsorption of Phosphine on a BN Nanosurface, Iranian Journal of Chemistry and Chemical Engineering (IJCCE). 37 (2018) 39-45. http://www.ijcce.ac.ir/article_26372_07cd9d7cbd9daad90e3022b5882405d9.pdf
[41] P. Buasaeng, W. Rakrai, B. Wanno, C. Tabtimsai, DFT investigation of NH3, PH3, and AsH3 adsorptions on Sc-, Ti-, V-, and Cr-doped single-walled carbon nanotubes, Applied Surface Science. 400 (2017) 506-514. http://www.sciencedirect.com/science/article/pii/S0169433216329464
[42] G. Paolo, B. Stefano, B. Nicola, C. Matteo, C. Roberto, C. Carlo, C. Davide, L.C. Guido, C. Matteo, D. Ismaila, C. Andrea Dal, G. Stefano de, F. Stefano, F. Guido, G. Ralph, G. Uwe, G. Christos, K. Anton, L. Michele, M.-S. Layla, M. Nicola, M. Francesco, M. Riccardo, P. Stefano, P. Alfredo, P. Lorenzo, S. Carlo, S. Sandro, S. Gabriele, P.S. Ari, S. Alexander, U. Paolo, M.W. Renata, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of Physics: Condensed Matter. 21 (2009) 395502. http://stacks.iop.org/0953-8984/21/i=39/a=395502
[43] D.R. Hamann, M. Schlüter, C. Chiang, Norm-Conserving Pseudopotentials, Physical Review Letters. 43 (1979) 1494-1497. http://link.aps.org/doi/10.1103/PhysRevLett.43.1494
[44] J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Physical Review B: Condensed Matter. 45 (1992) 13244-13249. http://link.aps.org/doi/10.1103/PhysRevB.45.13244
[45] J.-x. Zhao, Y.-h. Ding, Silicon Carbide Nanotubes Functionalized by Transition Metal Atoms:  A Density-Functional Study, The Journal of Physical Chemistry C. 112 (2008) 2558-2564. https://doi.org/10.1021/jp073722m
[46] Y. Miyamoto, A. Rubio, S.G. Louie, M.L. Cohen, Electronic properties of tubule forms of hexagonal ${mathrm{BC}}_{3}$, Physical Review B. 50 (1994) 18360-18366. https://link.aps.org/doi/10.1103/PhysRevB.50.18360