[1] W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Hybrid Nanorod-Polymer Solar Cells, Science 80 (2002) 2425-2427. DOI: 10.1126/science.1069156
[2] J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A.J. Heeger, Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing, Science 317 (2007) 222-225. DOI: 10.1126/science.1141711
[3] D. Zhang, K. Zhang, Y. Wang, Y. Wang, Y. Yang, Thermoelectric Effect Induced Electricity in Stretchable Graphene-Polymer Nanocomposites for Ultrasensitive Self-Powered Strain Sensor System, Nano Energy 56 (2019) 25-32. https://doi.org/10.1016/j.nanoen.2018.11.026
[4] S.N. Patel, A.M. Glaudell, K.A. Peterson, E.M. Thomas, K.A. O’Hara, E. Lim, M.L. Chabinyc, Morphology Controls the Thermoelectric Power Factor of a Doped Semiconducting Polymer, Science 3 (2017) 1700434. DOI: 10.1126/sciadv.1700434
[5] J. Yan, A. Downey, A. Chen, S. Laflamme, S. Hassan, Capacitance-Based Sensor with Layered Carbon-Fiber Reinforced Polymer and Titania-Filled Epoxy, Composite Structures 227 (2019) 111247. https://doi.org/10.1016/j.compstruct.2019.111247
[6] C. Tuloup, W. Harizi, Z. Aboura, Y. Meyer, K. Khellil, R. Lachat, On the Use of In-Situ Piezoelectric Sensors for the Manufacturing and Structural Health Monitoring of Polymer-Matrix Composites, A Literature Review, Composite Structures 215 (2019) 127-149. https://doi.org/10.1016/j.compstruct.2019.02.046
[7] A.B. Puthirath, A. Baburaj, K. Kato, D. Salpekar, N. Chakingal, Y. Cao, G. Babu, P.M. Ajayan, High Sulfur Content Multifunctional Conducting Polymer Composite Electrodes for Stable Li-S Battery, Electrochimica Acta 306 (2019) 489-497. https://doi.org/10.1016/j.electacta.2019.03.136
[8] T. Janoschka, N. Martin, U. Martin, C. Friebe, S. Morgenstern, H. Hiller, M.D. Hager, U.S. Schubert, An Aqueous, Polymer-Based Redox-Flow Battery Using Non-Corrosive, Safe, and Low-Cost Materials, Nature 527 (2015) 78-81. Doi:10.1038/nature18909.
[9] H. Yazdani, H. Ghasemi, C. Wallace, K. Hatami, Mechanical Properties of Carbon Nanotube‐filled Polyethylene Composites: A Molecular Dynamics Simulation Study, Polymer Composites 40 (2019) 1850-1861. Doi: org/10.1002/pc.25175.
[10] M. Hadipeykani, D. Toghraie, Thermomechanical Properties of the Polymeric Nanocomposite Predicted by Molecular Dynamics, ADMT Journal 12 (2019) 25-32. Doi://civilica.com/doc/1008336/.
[11] I. Bustero, I. Gaztelumendi, I. Obieta, M.A. Mendizabal, A. Zurutuza, A. Ortega, B. Alonso, Free-Standing Graphene Films Embedded in Epoxy Resin with Enhanced Thermal Properties, Advanced Composites and Hybrid Materials 3 (2020) 31-40. 10.1007/s42114-020-00136-6.
[12] E.H.C. Ferreira, R.J.E. Andrade, G.J.M. Fechine, The Superlubricity State of Carbonaceous Fillers on Polyethylene-Based Composites in a Molten State, Macromolecules 52 (2019) 9620-9631. Doi:10.1021/acs.macromol.9b01746
[13] Z. Zhang, J. Ding, B.M. Ocko, J. Lhermitte, J. Strzalka, C.-H. Choi, F.T. Fisher, K.G. Yager, C.T. Black, Nanoconfinement and Salt Synergistically Suppress Crystallization in Polyethylene Oxide, Macromolecules 53 (2020) 1494-1501. Doi:10.1021/acs.macromol.9b01725
[14] M. Wang, D. Galpaya, Z.B. Lai, Y. Xu, C. Yan, Surface Functionalization on the Thermal Conductivity of Graphene–Polymer Nanocomposites, International Journal of Smart and Nano Materials 5 (2014) 123-132. Doi:org/10.1080/19475411.2014.904828
[15] Y. Xiong, H. Wu, J. Gao, W. Chen, J. Zhang, Y. Yue, Toward Improved Thermal Conductance of Graphene-Polyethylene Composites via Surface Defect Engineering: A Molecular Dynamics Study, Acta Physico-Chimica Sinica 35 (2019) 1150. Doi: 10.3866/PKU.WHXB201901002
[16] M. Wang, N. Hu, L. Zhou, C. Yan, Enhanced Interfacial Thermal Transport across Graphene–Polymer Interfaces by Grafting Polymer Chains, Carbon 85 (2015) 414-421. Doi:org/10.1016/j.carbon.2015.01.009
[17] H. Tafrishi, S. Sadeghzadeh, R. Ahmadi, F. Molaei, F. Yousefi, H. Hassanloo, Investigation of Tetracosane Thermal Transport in Presence of Graphene and Carbon Nanotube Fillers––A Molecular Dynamics Study, Journal of Energy Storage 29 (2020) 101321. Doi: 10.1016/j.est.2020.101321
[18] S. Mohammadi, M. Esmailpour, F. Khoeini, Investigation of Graphene and Silicene-DNA nanostructures: DNA Sensing, Journal of research on many-body system 10 (2020) 1-12. Doi: 10.22055/JRMBS.2020.15567
[19] F. Khoeini, L. Esmaeili, Effects of electric and magnetic fields on electronic properties of stanene nanoribbons, Journal of research on many-body system 2 (2019) 61-69. Doi: 10.22055/JRMBS.2019.14835
[20] Q. Wang, B. Jiang, B. Li, Y. Yan, A Critical Review of Thermal Management Models and Solutions of Lithium-Ion Batteries for the Development of Pure Electric Vehicles, Renewable and Sustainable Energy Reviews 64 (2016) 106. Doi.org/10.1016/j.rser.2016.05.033
[21] T. Lu, K. Kim, X. Li, J. Zhou, G. Chen, J. Liu, Thermal Transport in Semicrystalline Polyethylene by Molecular Dynamics Simulation, Journal of Applied Physics 123 (2018) 015107. Doi: org/10.1063/1.5006889
[22] J.S. Lewis, Z. Barani, A.S. Magana, F. Kargar, A.A. Balandin, Thermal and Electrical Conductivity Control in Hybrid Composites with Graphene and Boron Nitride Fillers, Materials Research Express 6 (2019) 085325. https://doi.org/10.1088/2053-1591/ab2215
[23] Y. Wang, C. Yang, Q.-X. Pei, Y. Zhang, Some Aspects of Thermal Transport across the Interface between Graphene and Epoxy in Nanocomposites, ACS Applied Materials Interfaces 8 (2016) 8272-8279. Doi: 10.1021/acsami.6b00325
[24] Z. Rao, Q. Wang, and C. Huang, Investigation of the Thermal Performance of Phase Change Material/Mini-Channel Coupled Battery Thermal Management System, Applied Energy 164 (2016) 659-669. https://doi.org/10.1016/j.apenergy.2015.12.021
[25] C. Mahoney, C.M. Hui, S. Majumdar, Z. Wang, J.A. Malen, M.N. Tchoul, K. Matyjaszewski, M.R. Bockstaller, Enhancing Thermal Transport in Nanocomposites by Polymer-Graft Modification of Particle Fillers, Polymer 93 (2016) 72-77. Doi:10.1016/j.polymer.2016.04.014
[26] A. Kutvonen, G. Rossi, T. Ala-Nissila, Correlations between Mechanical, Structural, and Dynamical Properties of Polymer Nanocomposites, Physical Review E 85 (2012) 041803. Doi:10.1103/PhysRevE.85.041803
[27] N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo, D. Ruch, Review of Thermal Conductivity in Composites: Mechanisms, Parameters and Theory, Progress in Polymer Science 61 (2016) 1-28. Doi:org/10.1016/j.progpolymsci.2016.05.001
[28] S. Pfaller, G. Possart, P. Steinmann, M. Rahimi, F. Müller-Plathe, M.C. Böhm, Investigation of Interphase Effects in Silica-Polystyrene Nanocomposites Based on a Hybrid Molecular-Dynamics–Finite-Element Simulation Framework, Physical Review E 93 (2016) 052505. https://doi.org/10.1103/PhysRevE.93.052505
[29] A. Vahedi, M.H. Sadr Lahidjani, S. Shakhesi, Multiscale Modelling of Thermal Conductivity of Carbon Nanotube Paraffin Nanocomposites, Materials Research Express 5 (2018) 115026. Doi:10.1016/j.physb.2018.09.017
[30] B. Mortazavi, O. Benzerara, H. Meyer, J. Bardon, S. Ahzi, Combined Molecular Dynamics-Finite Element Multiscale Modeling of Thermal Conduction in Graphene Epoxy Nanocomposites, Carbon 60 (2013) 356-365. Doi:10.1016/j.carbon.2013.04.048.
[31] B. Mortazavi, H. Yang, F. Mohebbi, G. Cuniberti, and T. Rabczuk, Graphene or H-BN Paraffin Composite Structures for the Thermal Management of Li-Ion Batteries: A Multiscale Investigation, Applied Energy 202 (2017) 323-334. Doi.org/10.1016/j.apenergy.2017.05.175
[32] S. Melchionna, G. Ciccotti, B. Lee Holian, Hoover NPT dynamics for systems varying in shape and size, Molecular Physics 78 (1993) 533-544. Doi: 10.1080/00268979300100371
[34] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, Journal of computational physics, 117 (1995) 1-19. Doi: doi.org/10.1006/jcph.1995.1039
[35] L. Razzaghi, M. Khalkhali, A. Rajabpour, F. Khoeini, Effect of graphene and carbon-nitride nanofillers on the thermal transport properties of polymer nanocomposites: A combined molecular dynamics and finite element study, Physical Review E 103 (2021) 013310. Doi:https://doi.org/10.1103/PhysRevE.103.013310
[37] M. Khalkhali, A. Rajabpour, F. Khoeini, Thermal Transport across Grain Boundaries in Polycrystalline Silicene: A Multiscale Modeling, Scientific Reports 9 (2019) 5684. https://doi.org/10.1038/s41598-019-42187-w
[38] F. Yousefi, F. Khoeini, A. Rajabpour, Thermal Rectification and Interfacial Thermal Resistance in Hybrid Pillared-Graphene and Graphene: A Molecular Dynamics and Continuum Approach, Nanotechnology 31 (2020) 285707. Doi:https://doiorg/10.1088/1361-6528/ab8420
[40] M. Wang, N. Pan, Predictions of effective physical properties of complex multiphase materials, Materials Science and Engineering: R: Reports 63 (2008) 1-30. Doi:.org/10.1016/j.mser.2008.07.001
[41] K. Bui, H.M. Duong, A. Striolo, D.V. Papavassiliou, Effective heat transfer properties of graphene sheet nanocomposites and comparison to carbon nanotube nanocomposites, The Journal of Physical Chemistry C 115 (2011) 3872-3880. Doi:10.1021/jp109978x
[42] M. Wang, D, Galpaya, Z.B. Lai, Y. Xu, C. Yan, Surface functionalization on the thermal conductivity of graphene–polymer nanocomposites, International Journal of Smart and Nano Materials 5 (2014) 123-132. Doi:doi.org/10.1080/19475411.2014.904828