[1] M.V. Berry, Quantal phase factors accompanying adiabatic changes, Proceedings of the Royal Society of London, A, Mathematical and Physical Sciences 392 (1984) 45-57. https://doi.org/10.1098/rspa.1984.0023
[11] J.A. Jones, V. Vedral, A. Ekert, G. Castagnoli, Geometric quantum computation using nuclear magnetic resonance, Nature 403 (2000) 869-871. https://doi.org/10.1038/35002528
[14] E. Rowell, Z. Wang, Mathematics of topological quantum computing, Bulletin of the American Mathematical Society 55 (2018) 183-238. https://doi.org/10.1090/bull/1605
[16] E.J. Galvez, Applications of geometric phase in optics, Recent Research Developments in Optics 2 (2002) 165-182.
[17] A. Morpurgo, J. Heida, T. Klapwijk, B. Van Wees, G. Borghs, Ensemble-average spectrum of aharonov-bohm conductance oscillations: evidence for spin-orbit-induced berry's phase, Physical review letters 80 (1998) 1050.
[18] Q. Niu, X. Wang, L. Kleinman, W.-M. Liu, D. Nicholson, G. Stocks, Adiabatic dynamics of local spin moments in itinerant magnets, Physical review letters 83 (1999) 207. https://doi.org/10.1103/PhysRevLett.83.207
[21] G. Najarbashi, B. Seifi, Quantum phase transition in the dzyaloshinskii-moriya interaction with inhomogeneous magnetic field: Geometric approach, Quantum Information Processing 16 (2017) 1-16.
[24] A. Ekert, M. Ericsson, P. Hayden, H. Inamori, J.A. Joens, D.K.L. Oi, V. Vedral, Geometric quantum Computation, Journal of Modern Optics 47 (2000) 2501-2513. https://doi.org/10.1080/09500340008232177
[26] D. Tong, L. Kwek, C. Oh, Geometric phase for entangled states of two spin-1/2 particles in rotating magnetic field, Journal of Physics A: Mathematical and General 36 (2003) 1149. https://doi.org/10.1088/0305-4470/36/4/320
[27] D. Tong, E. Sjöqvist, L. Kwek, C. Oh, M. Ericsson, Relation between geometric phases of entangled bipartite systems and their subsystems, Physical Review A 68 (2003) 022106. https://doi.org/10.1103/PhysRevA.68.022106
[29] S. Chaturvedi, M. Sriram, V. Srinivasan, Berry's phase for coherent states, Journal of Physics A: Mathematical and General 20 (1987) 1071. https://doi.org/10.1007/BF02742688
[31] D.-B. Yang, Y. Chen, F.-L. Zhang, J.-L. Chen, Geometric phases for nonlinear coherent and squeezed states, Journal of Physics B: Atomic, Molecular and Optical Physics 44 (2011) 075502. https://doi.org/10.1088/0953-4075/44/7/ 075502
[32] A. Ekert, Quantum cryptography based on Bell's theorem, Physical Review Letters 67 (1991) 661. https://doi.org/10.1103/PhysRevLett.67.661
[34] G. Najarbashi, S. Mirzaei, Noise effects on entangled coherent state generated via atom-field interaction and beam splitter, International Journal of Theoretical Physics 55 (2016) 2311-2323. https://doi.org/10.1007/s10773-015-2869-7
[35] G. Najarbashi, S. Mirzaei, Entanglement of multi-qudit states constructed by linearly independent coherent states: Balanced case, International Journal of Theoretical Physics 55 (2016) 1336-1353. https://doi.org/10.1007/s10773-015-2775-z
[36] B. Mojaveri, A. Dehghani, R. Jafarzadeh Bahrbeig, Enhancing entanglement of entangled coherent states via a f-deformed photon-addition operation, The European Physical Journal Plus 134 (2019) 1-8. https://doi.org/10.1140/epjp/i2019-12823-7
[37] A. Dehghani, B. Mojaveri, A.A. Alenabi, Photon added qutrit like entangled coherent states of light, Journal of Research on Many-body Systems 11 (2022) 37-50. https://doi.org/10.22055/JRMBS.2021.17268
[38] A. Dehghani, B. Mojaveri, M. Aryaie, A.A. Alenabi, Superposition of two-mode “Near” coherent states: non-classicality and entanglement, Quantum Information Processing 18 (2019) 1-16. https://doi.org/10.1007/s11128-019-2216-7
[39] X. Wu, S.P. Jia, C.L. Cai, L.M. Kuang, Witnessing entanglement via the geometric phase in a impurity-doped Bose-Einstein condensate, (2021). https://doi.org/10.48550/arXiv.2106.00224
[40] S.J. Akhtarshenas, Concurrence vectors in arbitrary multipartite quantum systems, Journal of Physics A: Mathematical and General 38 (2005) 6777. https://doi.org/10.1088/0305-4470/38/30/011
[43] S. Mirzaei, G. Najarbashi, One-mode wigner quasi-probability distribution function for entangled coherent states generated by beam splitter and cavity QED, Reports on Mathematical Physics 83 (2019) 1-20. https://doi.org/10.1016/S0034-4877(19) 30020 -5
[44] A. Messina, B. Militello, A. Napoli, Generation of Glauber coherent state superpositions via unitary transformations. Proceedings of Institute of Mathematics of NAS of Ukraine 50. No. Part 2. (2004).
[45] A.P. Lund, et al., Conditional production of superpositions of coherent states with inefficient photon detection, Physical Review A 70 (2004) 020101. https://doi.org/10.1103/PhysRevA.70.020101
[46] H. Jeong, A.P. Lund, T.C. Ralph, Production of superpositions of coherent states in traveling optical fields with inefficient photon detection, Physical Review A 72 (2005) 013801. https://doi.org/10.1103/PhysRevA.72.013801
[48] H. Takahashi, et al., Generation of large-amplitude coherent-state superposition via ancilla-assisted photon subtraction, Physical review letters 101 (2008) 233605. https://doi.org/10.1103/PhysRevLett.101.233605
[49] T. Gerrits, et al., Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum, Physical Review A 82 (2010) 031802. https://doi.org/10.1103/PhysRevA.82.031802