[3] M. Josefsson, A. Svilans, A.M. Burke,
et al. A quantum-dot heat engine operating close to the thermodynamic efficiency limits,
Nature Nanotech 13 (2018) 920–924.
https://doi.org/10.1038/s41565-018-0200-5
[12] P.A. Erdman, J.T. Peltonen, B. Bhandari, B. Dutta, H. Courtois, R. Fazio, F. Taddei, J.P. Pekola, Nonlinear thermovoltage in a single-electron transistor,
Physical Review B 99 (2019) 165405. https://doi.org/10.1103/PhysRevB.99.165405
[13] A.A.M. Staring, L.W. Molenkamp, B.W. Alphenaar, H. van Houten, O.J.A. Buyk, M.A.A. Mabesoone, C.W.J. Beenakker, C.T. Foxon, Coulomb-Blockade Oscillations in the Thermopower of a Quantum Dot. Europhysics Letters 22 (1993) 57.
[14] S. Fahlvik Svensson, E.A. Hoffmann, N. Nakpathomkun, P.M. Wu, H.Q. Xu, H.A. Nilsson, D. Sanchez, V.Kashcheyevs, H. Linke, Nonlinear thermovoltage and thermocurrent in quantum dots,
New Journal of Physics 15 (2013) 105011.
https://doi.org/10.1088/1367-630/15/10/105011
[15] P. Reddy, S.Y. Jang, R.A. Segalman, A. Majumdar, Thermoelectricity in Molecular Junctions, Science, 315 (2007) 1568. doi: 10.1126/science.1137149
[18] Y. Meir, N.S. Wingreen, Landauer formula for the current through an interacting electron region, Physical Review Letters 68 (1992) 2512. https://doi.org/10.1103/PhysRevLett.68.2512
[19] Y. Meir, N.S. Wingreen, P.A. Lee, Transport through a strongly interacting electron system: Theory of periodic conductance oscillations,
Physical Review Letters 66 (1991) 3048.
https://doi.org/10.1103/PhysRevLett.66.3048
[20] C.W.J. Beenakker, Theory of Coulomb-blockade oscillations in the conductance of a quantum dot, Physical Review B 44 (1991) 1646. https://doi.org/10.1103/PhysRevB.44.1646
[22] L.A. Zotti, M. Bürkle, F. Pauly, W. Lee, K. Kim, W. Jeong, Y. Asai, P. Reddy, J.C. Cuevas, Heat dissipation and its relation to thermopower in single-molecule junctions,
New Journal of Physics 16 (2014) 015004.
https://doi.org/10.1088/1367-2630/16/1/015004