[1] G. Was, The displacement of atoms, fundamentals of radiation materials science, Springer, New York, (2017).
[2] S. Kanazawa, M. Okada, I. Kimura, Application of Accelerators in Research and Industry, American Institute of Physics, (2012) 881-884.
[3] B. Khorsandi, Ph.D. Thesis, Ohio State University, (2007).
[4] Y. Katoh, L.L. Snead, I. Szlufarska, W.J. Weber, Radiation effects in SiC for nuclear structural applications, Journal of Current Opinion in Solid State and Materials Science, 16 (2012) 143-152. https://doi.org/10.1016/j.cossms.2012.03.005
[5] B.J. Cowen, M.S. El-Genk, K. Hattar, S.A. Briggs, Investigation of irradiation effects in crystalline and amorphous SiC, Journal of Applied Physics, 126 (2019) 135902. https://doi.org/10.1063/1.5085216
[6] W. He, C. Chen, Z. Xu, Molecular dynamics simulations of silicon carbide nanowires under single-ion irradiation, Journal of Applied Physics, 126 (2019) 125902. https://doi.org/10.1063/1.5121873
[7] H. Gao, H. Wang, M. Niu, L. Su, Radiation damage behavior of amorphous SiOC polymer-derived ceramics: the role of in situ formed free carbon, Journal of Nuclear Materials, 545 (2021) 152652. https://doi.org/10.1016/j.jnucmat.2020.152652
[8] M. Jiang, S. Peng, G. Yang, H. Gong, Z. Liu, L. Qiao, X. Zu, Ab initio molecular dynamics simulation of the radiation damage effects of GaAs/AlGaAs superlattice, Journal of Nuclear Materials, 516 (2019) 228-237. https://doi.org/10.1016/j.jnucmat.2019.01.030
[9] S. Zhang, M. Li, H. Xiao, Z. Liu, X. Zu, A comparative study of electron radiation response of Pu2Zr2O7 and La2Zr2O7: An ab initio molecular dynamics study, Journal of Materials, 14 (2021) 1516. https://doi.org/10.3390/ma14061516
[10] T. Kobayashi, K. Harada, Y. Kumagai, F. Oba, Y. Matsushita, Native point defects and carbon clusters in 4H-SiC: A hybrid functional study, Journal of Applied Physics, 125 (2019) 125701. https://doi.org/10.1063/1.5089174
[11] X. Wang, J. Zhao, Z. Xu, F. Djurabekova, M. Rommel, Y. Song, F. Fang, Density functional theory calculation of the properties of carbon vacancy defects in silicon carbide, Nanotechnology and Precision Engineering, 3 (2020) 211-217. https://doi.org/10.1016/j.npe.2020.11.002
[12] E. Artacho, E. Anglada, O. Dieguez, J.D. Gale, A. Gracia, J. Junquera, R.M. Martin, P. Ordejon, J.M. Pruneda, D. Sanchez, The SIESTA method; developments and applicability, Journal of Physics: Condensed Matter, 20 (2008) 064208. https://doi.org/10.1088/0953-8984/20/6/064208
[13] S. Majidi, N. Beryani Nezafat, D.P. Rai, A. Achour, H. Ghaziasadi, A. Sheykhian, S. Solaymani, Optical and electronic properties of pure and fully hydrogenated SiC and GeC nanosheets: first-principles study, Journal of Optical and Quantum Electronics, 50 (2018) 1-13. https://doi.org/10.1007/s11082-018-1556-3
[16] Md. Nuruzzaman, M. Ariful Islam, M. Ashraful Alam, M. Hadi Shah, A. Tanveer Karim, Structural, elastic and electronic properties of 2H- and 4H-SiC, Journal of Engineering Research and Applications, 5 (2015) 48-52.
[17] H. Morkoc, S. Strite, G. Gao, M. Lin, B. Sverdlov, M. Burns, Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies, Journal of Applied Physics, 76 (1994) 1363. https://doi.org/10.1063/1.358463
[18] F. Gao, E.J. Bylaska, W.J. Weber, L.R. Corrales, Native defect properties in b-SiC: Ab initio and empirical potential calculations, Journal of Nuclear Instruments and Methods in Physics, 180 (2001) 286-291. https://doi.org/10.1016/S0168-583X(01)00430-X