Exploring a suitable partner for Sb2S3 solar cells for use in tandem solar cells

Document Type : Full length research Paper

Authors

Department of Physics, Faculty of Science, University Sistan and Baluchestan, Zahedan, Iran

Abstract

In this research, different tandem solar cells have been designed and simulated, in which the upper sub-cell is Sb2S3. Different structures including Sb2Se3, CISe, CZTSe and GeTe were proposed for the lower sub-cell.It is very important to match the current in the upper and lower sub-cells in consecutive cells. To reach the current matching point, the thickness of the layers of the lower sub-cell was kept constant and the thickness of the absorbing layer of the upper cell was changed so that the current density in both sub-cells was the same. At the current matching point, the performance of the upper cell under the AM1.5G standard spectrum radiation and the performance of the lower sub-cell under the filtered spectrum radiation were evaluated, and then the current-voltage characteristic curve of the tandem cell was obtained from the sum of the characteristic curves of the two sub-cells. The efficiency obtained for Sb2S3/Sb2Se3, Sb2S3/CIS, Sb2S3/CZTSe and Sb2S3/GeTe tandem cells was 22.10%, 30.95%, 24.83% and 36.80%, respectively. The greater the energy gap difference of the sub-cells, the more photons are collected and the greater current density is obtained for the cell. The best performance was obtained when GeTe was used as the bottom sub-cell.

Keywords

Main Subjects


[1] K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nature Energy 2 (2017) 1-8.  https://doi.org/10.1038/nenergy.2017.32
[2] A. Richter, M. Hermle, S.W. Glunz, Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells, IEEE Journal of Photovoltaics 3 (2013) 1184-1191.  https://doi.org/10.0.4.85/JPHOTOV.2013.2270351
[3] T.K. Todorov, D.M. Bishop, Y.S. Lee, Materials perspectives for next-generation low-cost tandem solar cells, Solar Energy Materials and Solar Cells 180 (2018) 350-357.  https://doi.org/10.1016/j.solmat.2017.07.033
[4] S. Sharma, K.K. Jain, A. Sharma, Solar cells: in research and applications—a review, Materials Sciences and Applications 6 (2015) 1145. https://doi.org/10.4236/msa.2015.612113
[5] J. Dhilipan, N. Vijayalakshmi, D.B. Shanmugam, R. Jai Ganesh, S. Kodeeswaran, S. Muralidharan, Performance and efficiency of different types of solar cell material–A review, Materials Today: Proceedings 66 (2022) 1295-1302  https://doi.org/10.1016/j.matpr.2022.05.132
[6] W. Shockley, H.J. Queisser, Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells, Journal of Applied Physics 32 (2004) 510-519.  https://doi.org/10.1063/1.1736034
[7] National Renewable Energy Laboratory Best Research-Cell Efficiency, (2022). Available from: https://www.nrel.gov/pv/cell-efficiency.html
[8] M. Mousa, F.Z. Amer, R.I. Mubarak, A. Saeed, Simulation of Optimized High-Current Tandem Solar-Cells With Efficiency Beyond 41%, IEEE Access 9 (2021)  49724-49737. https://doi.org/10.1109/ACCESS.2021.3069281
[9] M.A. Green, Commercial progress and challenges for photovoltaics, Nature Energy 1 (2016)  15015.  https://doi.org/10.1038/nenergy.2015.15
[10] S.M. Iftiquar, J. Jung, J. Yi, Improved efficiency of perovskite-silicon tandem solar cell near the matched optical absorption between the subcells, Journal of Physics D: Applied Physics 50 (2017) 405501. https://doi.org/10.1088/1361-6463/aa8655
[11] Y. Cheng, L. Ding, Perovskite/Si tandem solar cells: Fundamentals, advances, challenges, and novel applications, SusMat 1 2021 324-344.  https://doi.org/10.1002/sus2.25
[12] N. Shrivastav, J. Madan, R. Pandey, A.E. Shalan, Investigations aimed at producing 33% efficient perovskite–silicon tandem solar cells through device simulations, RSC Advances 11 (2021) 37366-3737.  https://doi.org/10.1039/D1RA06250F
[13] A.D. Vos, Detailed balance limit of the efficiency of tandem solar cells, Journal of Physics D: Applied Physics 13 (1980) 839.  https://dx.doi.org/10.1088/0022-3727/13/5/018
[14] J.F. Geisz, R.M. France, K.L. Schulte, M.A. Steiner, A.G. Norman, H.L. Guthrey, M.R. Young, T. Song, T. Moriarty, Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration, Nature Energy 5 (2020) 326-335.  https://doi.org/10.1038/s41560-020-0598-5
[15] I. Tobías, A. Luque, Ideal efficiency of monolithic, series-connected multijunction solar cells, Progress in Photovoltaics: Research and Applications 10 (2002) 323-329.  https://doi.org/10.1002/pip.427
[16] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nature Chemistry 6 (2014) 242-247. https://doi.org/10.1038/nchem.1861
[17] L. Dou, J. You, Z. Hong, Z. Xu, G. Li, R.A. Street, Y. Yang, 25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research, Advanced Materials 25 (2013) 6642-6671.  https://doi.org/10.1002/adma.201302563
[18] A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A.R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, A.N. Tiwari, Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells, Nature Materials 12 (2013) 1107-1111.  https://doi.org/10.1038/nmat3789
[19] M. Graetzel, R.A.J. Janssen, D.B. Mitzi, E.H. Sargent, Materials interface engineering for solution-processed photovoltaics, Nature 488 (2012) 304-312.  https://doi.org/10.1038/nature11476
[20] U.A. Shah, S. Chen, G.M.G. Khalaf, Z. Jin, H. Song, Wide Bandgap Sb2S3 Solar Cells, Advanced Functional Materials 31 (2021) 2100265. https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202100265
[21] M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline semiconductor solar cells, Thin Solid Films 361 (2000) 527-532.  https://doi.org/10.1016/S0040-6090(99)00825-1
[22] M. Saadat, O. Amiri, Fine adjusting of charge carriers transport in absorber/HTL interface in Sb2(S,Se)3 solar cells, Solar Energy 243 (2022) 163-173. https://doi.org/10.1016/j.solener.2022.07.047
[23] Z. Dahmardeh, M. Saadat, Exploring the potential of standalone and tandem solar cells with Sb2S3 and Sb2Se3 absorbers: a simulation study, Scientific Reports 13 (2023) 22632. https://doi.org/10.1038/s41598-023-49269-w
[24] Z. Dahmardeh, M. Saadat, O. Amiri, Enhancing photovoltaic performance of antimony sulfide-selenide tandem solar cells through selenium content variation: Modeling and simulation analysis, Solar Energy 262 (2023) 111788. https://doi.org/10.1016/j.solener.2023.06.006
[25] M.M. Salah, A. Zekry, M. Abouelatta, A. Shaker, M. Mousa, F.Z. Amer, R.I. Mubarak, A. Saeed, High-Efficiency Electron Transport Layer-Free Perovskite/GeTe Tandem Solar Cell: Numerical Simulation, Crystals 12 (2022) 878. https://doi.org/10.3390/cryst12070878
[26] M. Saadat, O. Amiri, A. Rahdar, Optimization of (Zn,Sn)O buffer layer in Cu(In,Ga)Se2 based solar cells, Solar Energy 189 (2019) 464-470. https://doi.org/10.1016/j.solener.2019.07.093
[27] M. Haghighi, M. Minbashi, N. Taghavinia, D.-H. Kim, S.M. Mahdavi, A.A. Kordbacheh, A modeling study on utilizing SnS2 as the buffer layer of CZT(S, Se) solar cells, Solar Energy 167 (2018) 165-171. https://doi.org/10.1016/j.solener.2018.04.010
[28] M. Minbashi, M.K. Omrani, N. Memarian, D.-H. Kim, Comparison of theoretical and experimental results for band-gap-graded CZTSSe solar cell, Current Applied Physics 17 (2017) 1238-1243.  https://doi.org/10.1016/j.cap.2017.06.003
[29] N. Singh, A. Agarwal, M. Agarwal, Numerical simulation of highly efficient lead-free all-perovskite tandem solar cell, Solar Energy 208 (2020) 399-410.  https://doi.org/10.1016/j.solener.2020.08.003