Explicit form of the nucleonic chemical potential in nuclear matter on the basis of Thomas-Fermi approximation

Document Type : Full length research Paper

Author

Assistant professor of Nuclear Physics in Kashan university

Abstract

By using the semi-classical Thomas-Fermi approximation in the framework of a phenomenological mean-field model, an explicit form of nucleonic chemical potential at different temperatures and densities is obtained. At finite temperatures, based on an extended statistical model, within Landau phenomenological theory, this explicit form is determined in terms of a new quantity known as extended effective mass which is a function of temperature, density and asymmetry parameter. By introducing the explicit form of nucleonic chemical potential, a new model for determination of the nuclear equation of state at different temperatures and densities with a behavior in agreement with the other elaborated theoretical models in this field is presented.

Keywords


 [1] S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars, John Wiley, New York (1983).
 
[2] H.A. Bethe, Reviews of Modern Physics 62 (1990) 801.
 
[3] N.K. Glendenning, Compact stars, Springer, New York, (1997).
[4] M.F. Rivet et al., Nuclear Physics A749 (2005) 73.
[5] P. Haensel, A.Y. Potekhin, D.G. Yakovlev, Neutron stars 1: Equation of state and structure, Springer Science and Business Media (2007).
[6] M. Camenzind, Compact Objects in Astrophysics, Springer-Verlag, Berlin, Heidelberg (2007).
 
[7] H.R. Moshfegh, M. Ghazanfari Mojarrad, European Physical Journal A 49 (2013) 1.
 
[8] C.F. von Weizsacker¸ Zeitschrift für Physik A Hadrons and Nuclei 96 (1935)431.
 
[9] H.A. Bethe, R.F. Bacher, Reviews of Modern Physics 8 (1936) 82.
 
[10] B. Friedman, V.R. Pandharipande, Nuclear Physics A 361 (1981) 502. I.E. Lagaris, V.R. Pandharipande, Nuclear Physics A359 (1981) 331.
 
[11] R.B. Wiringa, V. Ficks, A. Fabrocini, Physical Review C 38 (1988) 1010.
 
[12] M. Baldo, Nuclear Methods and the Nuclear Equation of State, World Scientific, Singapore (1990).
 
[13] R.B. Wiringa, V.G.J Stoks, R. Schiavilla, Physical Review C51 (1995) 38.
 
[14] A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Physical Review C 58 (1998) 1804.
 
[15] H. Huber, F. Weber, M.K. Weigel, Physical Review C57 (1998) 3484.
 
[16] M. Baldo, A. Fiasconaro, H.Q. Song, G. Giansiracusa, and U. Lombardo, Physical Review C 65 (2002) 017303.
 
[17] M. Modarres, H.R. Moshfegh, Progress of Theoretical Physics 112 (2004) 21.
 
[18] W. Zuo, Z.H. Li, A. Li, U. Lombardo, Nuclear Physics A 745 (2004) 34.
 
[19] G.H. Bordbar, M. Bigdeli, Physical Review C 76 (2007) 035803.
 
[20] A. Rios, A. Polls, A. Ramos, H. Müther, Physical Review C 78 (2008) 044314.
 
[21] A. Rios, A. Polls, I. Vidana, Physical Review C 79 (2009) 025802.
 
[22] S. Zaryouni, H.R. Moshfegh, European Physical Journal A 43 (2010) 283.
 [23] H.R. Moshfegh, S. Goudarzi, Acta Physica Polonica B 46 (2015).
[24] W.D. Myers, W.J. Swiatecki, Annals of Physics 55 (1969) 395.
[25] B.D. Serot, J.D. Walecka, Advances in Nuclear Physics 16 (1986) 1.
 
[26] S.W. Huang, M.Z. FU, S.S. Wu, S.D. Yang, Modern Physics Letters A 5 (1990) 1071.
 
[27] W.D. Myers, W.J. Swiatecki, Annals of Physics 204 (1990) 401.
 
[28] J. Randrup, E. Lima Medeiros, Nuclear Physics A 526 (1991) 115.
 
[29] H. Müller, B.D. Serot, Physical Review C 52 (1995) 2072.
 
[30] H. Müller, B.D. Serot, Nuclear Physics A 606 (1996) 508.
 
[31] W.D. Myers, W.J. Swiatecki, Nuclear Physics A 601 (1996) 141.
 
[32] E. Chabanat, P. Bonche, P. Haensel, J. Mayer, R. Schaeffer, Nuclear Physics A 635 (1998) 231.
 
[33] K. Strobel, F. Weber, M.K. Weigel, Zeitschrift für Naturforschung 54 (1999) 83.
 
[34] H.R. Moshfegh, M. Ghazanfari Mojarrad, Journal of Physics G: Nuclear and Particle Physics 15 (2011).
 
[35] R.K. Pathria, Statistical Mechanics 2nd ed, Oxford, Butterworth-Heinemann, (1996).
 
[36] H.R. Moshfegh, M. Modarres, Journal of Physics G: Nuclear and Particle Physics 24)1998 (821.