[1] J. Von Neumann, Mathematical foundation of quantum mechanics, Oxford, (1955).
[2] Y. Aharonov, D.Z. Albert, L. Vaidman, How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100, Physical Review Letters 60. (1988) 1351-1354.
[3] Y. Aharonov, D. Rohrlich, Quantum paradoxes, John Wiley,New York, (2004).
[4] L.M. Johansen, Non classicality in weak measurements, Physcal Review A 70 (2004) 052115-1- 052115-12.
[6] O. Hoston, P. Kwait, Observation of the spin hall effect of light via weak mea-surements, Science 319 (2008) 787-790.
[7] R. Jozsa, Compelex weak values in quantum measurement, Physical Review A 76 (2007) 044103.
[8] T. Geszti, Postselected weak meas-urement beyond the weak value, Physical Review A 81 (2010) 044102.
[9] S. Pang, S. Wu, Z. Chen, Weak measurement with orthogonal pre-selection and post selection, Physical Review A 86 (2012) 022112.
[10] Y. Kedem, L. Vaidman, Modular vlues and weak values of quantum observable, Physical Review Letters 105 (2010) 230401.
[11] K. Ogawa, O. Yasuhiko, H. Kobayashi, T. Nakanishi and A. Tomita, A framework for measuring weak values without weak interactions and its diagrammatic representation, New Journal of Physics 21 (2019) 043013.
[12] S. Mancini, V.I. Manko, P. Tombesi, Symplectic tomography as classical approach to quantum systems, Physical Letters A 213 (1996) 1-6.
[13] S. Mancini, V.I. Manko, P. Tombesi, Classical-like description of quantum dynamics by means of symplectic tomography, Foundation of Physics 27 (1997) 801-824.
[14] U. Leonhardt, Measuring the quantum state of light, Cambridge university press, Cambridge, (1997).
[15] K. Ogawa, O. Yasuhiko, H. Kobayashi, T. Nakanishi and A. Tomita, A framework for measuring weak values without weak interactions and its diagrammatic representation, New Journal of Physics 21 (2019) 043013.