اثر برهم‌کنش تبادلی و ناهمسانگردی یونی منفرد بر حلقه‌ پسماند آلیاژهای سه‌تایی فری‌مغناطیس ABxC1-x با ساختار آمورف

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 دانشگاه یاسوج

2 عضو هیات علمی

چکیده

خصوصیات مغناطیسی آلیاژهای سه‌تایی فری‌مغناطیس آمورف با ساختار ABxC1-x با استفاده از شبیه‌سازی مونت کارلو در چارچوب مدل آیزینگ و مدل برهم‌کنش تبادلی RKKY بررسی شده است. برای این منظور اثر برهم‌کنش تبادلی و ناهمسانگردی یونی منفرد بر حلقه پسماند مطالعه شده است. شبیه‌سازی‌ها نشان می‌دهند که منحنی پسماند با تغییر برهم‌کنش تبادلی و ناهمسانگردی یونی تغییر شکل می‌دهد. مشاهده می‌شود که به ازای برخی از پارامترها، منحنی‌های پلکانی و حلقه-های سه‌تایی پسماند ایجاد شده است. علاوه بر این، اثر غلظت بر رفتار حرارتی مغناطش نیز مطالعه شده است. نتایج نشان می‌دهند که در برخی از غلظت‌ها، دمای بحرانی جبران کمتر از دمای گذار می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of exchange interaction and single ion-anisotropy on the Hysteresis loop of ferrimagnetic ternary alloys ABxC1-x with amorphous structures

نویسندگان [English]

  • Hamze Nakhaee Motlagh 1
  • Ghasem Rezaei 2
1
2
چکیده [English]

Based on the Monte Carlo simulation and the RKKY model, magnetic properties of mixed spin (3/2,1,1/2) ferrimagnetic ternary alloys of the type ABxC1-x are investigated. To do this, the influence of exchange energy and single ion-anisotropy on the magnetic hysteresis loop and magnetic susceptibility of ternary alloys with amorphous structures are examined. Our simulations reveal that the changes in exchange energy and single ion-anisotropy have a great influence on the magnetic hysteresis loop. It is seen that for some values of these parameters the stepwise curves and the triple hysteresis loop are appeared. Furthermore, the influence of concentration on the behaviour of thermal magnetization is studied. Our results indicate that for some values of concentration, the compensation temperature becomes less than the phase temperature.

کلیدواژه‌ها [English]

  • Ternary alloys
  • Ferrimagnetism
  • Monte Carlo simulation
  • RKKY model
  • Exchange energy
  • Single ion-anisotropy
  • Hysteresis loop
 
[1] H. Hu, Z. Xin, W. Liu, Magnetic properties of the mixed ferro-ferrimagnets composed of Prussian blue analogs with (AxB1–x)yC, Physics Letters A 357 (2006) 388-392.
 
[2] A. Bobak, O.F. Abubrig, D. Horvath, Magnetic properties of a mixed ferro–ferrimagnetic ternary alloy, Physica A 312 (2002) 187-207.
 
[3] A. Bobak, F.O. Abubrig, T. Balcerzak, Phase diagrams of the mixed ferro-ferrimagnetic ternary alloy with a single-ion anisotropy, Journal of Magnetism and Magnetic Materials 272276 (2004) 989-990.
 
[4] J. Dely, A. Bobak, Magnetic properties of the ternary alloy with a structure of Prussian blue analogs, Physica B 388 (2007) 49-58.
 
[5] J. Dely, A. Bobak, Phase diagrams of the ternary alloy with a single-ion anisotropy in the mean-field approximation, Journal of Magnetism and Magnetic Materials 305 (2006) 464-466.
 
[6] J. Dely, A. Bobak, M. Zukovi, Critical temperature of a mixed ferro-ferrimagnetic ternary alloy, Journal of Physics: Conference Series 200 (2010) 022005.
 
[7] G. Mert, Green's function study of a three-sublattice mixed-spin Heisenberg ferromagnetic and ferrimagnetic system, Journal of Magnetism and Magnetic Materials 363 (2014) 224-231.
 
[8] M. Zukovic, A. Bobak, Critical and compensation phenomena in a mixed-spin ternary alloy: a Monte Carlo study, Journal of Magnetism and Magnetic Materials 322 (2010) 2868-2873.
 
[9] G.M. Buendıa, J.E. Villarroel, Compensation temperatures of mixed ferro-ferrimagnetic ternary alloys, Journal of Magnetism and Magnetic Materials 310 (2007) e495-e497.
 
[10] J. Dely, A. Bobak and D. Horvath, Mean-Field and Monte Carlo Study of a Mixed Ferro-Ferrimagnetic Ternary Alloy, Acta Physica Polonica A 113 (2008) 461-464.
 
[11] E. Vatansever, Y. Yüksel, Dynamic phenomena in magnetic ternary alloys, Journal of Alloys and Compounds 689 (2016) 446-450.
 
[12] S. Tsuji, T. Kasama, T. Idogaki, Decoration–iteration transformation and Monte Carlo simulation for mixed ferrimagnetic ternary alloy, Journal of Magnetism and Magnetic Materials 310 (2007) e471-e473.

[13] H. Kawamura, A Simplified Model of Phase Transition in Amorphous Antiferromagnets. II: Effect of the Magnetic Field, progress of Theoretical physics 70 (1983) 1197-1206.

 
[14] L. Wang, J. Ding, H. Z. Kong, Y. Li, Y.P. Feng, Monte Carlo simulation of a cluster system with strong interaction and random anisotropy, Physical Review B 64 (2001) 214410.
 
[15] H. Nakhaei Motlagh, G. Rezaei, Magnetic properties of ferro-ferrimagnetic ternary alloys with Ay(BxC1-x)1-y amorphous structures: Effects of concentration, temperature and magnetic field, Journal of Alloys and compounds 711 (2017) 677-685.
 
[16] M.A. Ruderman, C. Kittel, Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons, Physical Review 96 (1954) 99.
 
[17] T. Kasuya, A theory of Metallic Ferro and Antiferromagnetism on Zener’s Model, Progress of Theoretical Physics 16 (1956) 45-57.
 
[18] K. Yosida, Magnetic Proyerties of Cu-Mn Alloys, Physical Review 106 (1957) 893.
 
[19] A.G. Dirks, J.W.M. Biesterbos, K.H.J. Buschow, Magnetic compensation temperatures of amorphous rare earth-cobalt alloys, Physica B 86 (1977) 761-763.
 
[20] L. Neel, Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism, Annals of PhysicsParis 3 (1948) 98-137.
 
[21] H. Magoussi, A. Zaim, M. Kerouad, Monte Carlo simulation of magnetic properties of spin-1 Blume- Capel nanowire, Solid State Communications 200 (2014) 32-41.
 
[22] H.Y. Wang, K. Xun, L. Xiao, Individual monolayer analysis of anomalous hysteresis loops, Physical Review B 70 (2004) 214431.
 
[23] Y.Z. Wu, G.S. Dong, X.F. Jin, Negative magnetic remanence in Co/Mn/Co grown on GaAs(001), Physical Review B 64 (2001) 214406.
 
[24] K. Takanashi, H. Kurokawa, H. Fujimori, A novel hysteresis loop and indirect exchange coupling in Co/Pt/Gd/Pt multilayer films, Applied Physics Letters 63 (1993) 1585-1587.