بررسی تاثیر طول و فاصله صفحات بر عملکرد کلیدهای نانوالکترومکانیکی گرافنی به روش دینامیک مولکولی

نوع مقاله : مقاله پژوهشی کامل

نویسنده

گروه فیزیک، دانشکدة علوم پایه، دانشگاه اراک، اراک، ایران

چکیده

کوچکتر شدن ابعاد نانوکلیدها از لحاظ مجتمع سازی دارای اهمیت بسیار می باشد ولی احتمالاً به دلایلی از جمله موانع ساخت تجربی و یا پیچیدگی های نظری، تاکنون نانوکلیدهایی با طول خیلی کم مورد بررسی قرار نگرفته اند. در این تحقیق عملکرد نانوکلید های گرافنی با طول های کمتر از nm30 و فاصله صفحات بسیار کم (در حدود nm2) با استفاده از ترکیب روش دینامیک مولکولی با روش ممان ها، شبیه سازی شده و نتایج به دست آمده با برخی از مدل های موجود مقایسه شده است. نتایج نشان می دهد که با کاهش طول نانوروبان ها و یا افزایش افزایش فاصله صفحه ها، ولتاژ روشن شدن نانوکلید ها افزایش می یابد. همچنین می توان دید که در طول های بلند نانو روبان ها، توافق خوبی با نتایج نظری وجود دارد ولی در طول های کم روابط نظری موجود دقت کافی نداشته و قادر به پیش بینی درست ولتاژ روشن شدن نمی باشند. همچنین نتایج نشان می دهند که در ابعاد ذکر شده، زمان روشن شدن نانو کلیدها به طور قابل ملاحظه های از زمان روشن شدن نانو کلید های موجود کمتر است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the effect of plate spacing and length on the performance of graphene nano-electromechanical switches using molecular dynamics method

نویسنده [English]

  • Mehran Gholipour Shahraki
Department of Physics, Faculty of Science, Arak University, Arak, Iran
چکیده [English]

Reducing the dimensions of nano-switches is very important in terms of integration, but for some reasons, including empirical obstacles or theoretical complexity, nano-switches with small lengths have not been studied yet. In this study, the performance of graphene nano-switches with lengths of less than 30nm and very low plate spacing (about nm2) is simulated using a combination of molecular dynamics and method of moments. The obtained results are compared with some of the available theoretical models. The results show that by decreasing the length of the nano-ribbons or increasing distance between plates, the pull-in voltage of the nano-switches is increased. The results also show that in long nano-ribbons, there is a good agreement with theoretical results, but in the short ones, the existing theoretical relations are not sufficiently precise and cannot predict the pull-in voltage accurately. Furthermore the results show that the switching times of the simulated nano-switches are considerable less than conventional nano-switches.

کلیدواژه‌ها [English]

  • Nanoswitch
  • Graphene
  • Molecular Dynamics
  • Method of Moments
 
[1] Ke. Changhong, D. Horacio, Nano-electro-mechanical Systems and Modelling, Handbook of Theoretical and Computational Nanotechnology, American Scientific Publishers (2005).
 
 [2] ف. مرادیانی، م. صیفوری، ک. عابدی، تحلیل و طراحی سوئیچ‏ پلاسمونیک با استفاده از نانونوارهای گرافنی در طول‏‌موج‏‌های مادون‏ قرمز میانی، پژوهش سیستم‌های‌بس‌ذره‌ای، 8 (2018) 101-105.
 
[2] F. Moradiani, M. Seifouri, K. Abedi, Design and Analysis of Plasmonic Switch at mid-IR Wavelengths with Graphene Nano-Ribbons, Journal of Research on Many-body Systems 8 (2018) 101-105.
 
[3] J. Sun, M. Muruganathan, N. Kanetake, H. Mizuta, Locally-actuated graphene-based nano-electro-mechanical switch, Micromachines 7 (2016) 1-6.
 
[4] E.L. Wolf, Applications of graphene: an overview, Springer, (2014).
 
[5] W. Wang, M. Muruganathan, J. Kulothungan, H. Mizuta, Study of dynamic contacts for graphene nano-electromechanical switches, Japanese Journal of Applied Physics 56 (2017) 1-8.
 
[6] S.N. Kazmi, M.A. Hafiz, K.N. Chappanda, S. Ilyas, J. Holguin, P.M. Costa, M.I. Younis, Tunable nanoelectromechanical resonator for logic computations, Nanoscale 9 (2017) 3449-3457.
 
[7] K.E. Kaczor‐Urbanowicz, C. Martín Carreras‐Presas, T. Kaczor, M. Tu, F. Wei, F. Garcia‐Godoy, D.T. Wong, Emerging technologies for salivaomics in cancer detection, Journal of cellular and molecular medicine 21 (2017) 640-647.
 
[8] O.Y. Loh, H.D. Espinosa, Nanoelectromechanical contact switches, Nature nanotechnology 7 (2012) 283 -295.
 
[9] M. Nie, Q.-A. Huang, W. Li, Pull-in characterization of doubly-clamped composite beams, Sensors and Actuators A 151 (2009) 118-126.
 
[10] H. Rong, Q.-A. Huang, M. Nie, W. Li, An analytical model for pull-in voltage of clamped–clamped multilayer beams, Sensors and Actuators A 116 (2004) 15-21.
 
[11] S. Chowdhury, M. Ahmadi, W.C. Miller, Pull-in voltage study of electrostatically actuated fixed-fixed beams using a VLSI on-chip interconnect capacitance model, Journal of Microelectromechanical systems 15 (2006) 639-651.
 
[12] ا. پیوسته، ق. اله‌یاری‌زاده، ع. مینوچهر، محاسبة خواص مکانیکی و ترمودینامیکی ساختارC3 کربید سیلیکون با استفاده از دینامیک مولکولی و نظریة تابعی چگالی، پژوهش‌سیستم‌های بس‌ذره‌ای، 8 (2019) 22-38.
[12] I. Peyvasteh, G. Alahyarizadeh, A. Minuchehr, Mechanical and thermodynamic properties of 3C structure of silicon carbide using molecular dynamics and density functional theory methods, Journal of Research on Many-body Systems 8 (2019) 22-38.
 
[13] J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Physical Review B 39 (1989) 5566-5568.
 
[14] A. Mayer, A monopole-dipole model to compute the polarization of metallic carbon nanotubes, Applied Physics Letters 86 (2005) 1-2.
 
[15] Z. Wang, R.W. Scharstein, Electrostatics of graphene: Charge distribution and capacitance, Chemical Physics Letters 489 (2010) 229-236.
 
[16] Z. Wang, M. Devel, Electrostatic deflections of cantilevered metallic carbon nanotubes via charge-dipole model, Physical Review B 76 (2007) 1-5.
 
[17] A. Mayer, P. Lambin, R. Langlet, Charge-dipole model to compute the polarization of fullerenes, Applied physics letters 89 (2006) 1-3.
 
[18] D.J. Evans, B.L. Holian, The nose–hoover thermostat, The Journal of chemical physics 83 (1985) 4069-4074.
 
[19] L.N. Dworsky, Introduction to numerical electrostatics using MATLAB, John Wiley & Sons, 2014.
 
[20] Y. Fang, P. Li, A new approach and model for accurate determination of the dynamic pull-in parameters of microbeams actuated by a step voltage, Journal of micromechanics and microengineering 23 (2013) 1-11.
 
[21] F. Scarpa, S. Adhikari, A.S. Phani, Effective elastic mechanical properties of single layer graphene sheets, Nanotechnology 20 (2009) 1-10.
 
[22] C.J. Shearer, A.D. Slattery, A.J. Stapleton, J.G. Shapter, C.T. Gibson, Accurate thickness measurement of graphene, Nanotechnology 27 (2016) 1-10.
 
[23] P. Li, T. Cui, Single-crystalline graphene radio-frequency nanoswitches, Journal of Micromechanics and Microengineering 25 (2015) 1-6.
 
[24] P. Tassin, T. Koschny, C.M. Soukoulis, Graphene for terahertz applications, Science 341 (2013) 620-621.
 
[25] M. Hasan, S. Arezoomandan, H. Condori, B. Sensale-Rodriguez, Graphene terahertz devices for communications applications, Nano Communication Networks 10 (2016) 68-78.