[1] F. Shiri, F. Kalantari Fotooh, M.H. Mosslemin, R. Mohebat, H2S adsorption on pristine and metal-decorated (8, 0) SWCNT: a first principle study, Journal of molecular modeling. 27 (2021) 143-150. https://doi.org/10.1007/s00894-021-04761-w
[3] C. Guo, J. Ouyang, H. Shin, J. Ding, Z. Li, F. Lapointe, J. Lefebvre, A.J. Kell, P.R.L. Malenfant, Enrichment of Semiconducting Single-Walled Carbon Nanotubes with Indigo-Fluorene-Based Copolymers and Their Use in Printed Thin-Film Transistors and Carbon Dioxide Gas Sensors, ACS Sensors. 5 (2020) 2136-2145. https://doi.org/10.1021/acssensors.0c00764
[4] A. Aghashiri, F.K. Fotooh, S. Hashemian, Density functional calculations of nickel, palladium and cadmium adsorption onto (10,0) single-walled carbon nanotube, Journal of molecular modeling. 25 (2019) 185. https://doi.org/10.1007/s00894-019-4062-z
[5] M. Bezi Javan, dsorption of CO and NO molecules on SiC nanotubes and nanocages: DFT study, Surface Science. 635 (2015) 128-142.
[13] X.-H. Sun, C.-P. Li, W.-K Wong, N.-B. Wong, C.-S. Lee, S.-T. Lee, B.-K. Teo, Formation of Silicon Carbide Nanotubes and Nanowires via Reaction of Silicon (from Disproportionation of Silicon Monoxide) with Carbon Nanotubes, Journal of the American Chemical Society. 124 (2002) 14464-14471. https://doi.org/10.1021/ja0273997
[14] M. Rostam, B. Somayeh, C. Raad, Ab initio density functional theory investigation of crystalline bundles of polygonized single-walled silicon carbide nanotubes, Journal of Physics: Condensed Matter. 20 (2008) 465214. http://stacks.iop.org/0953-8984/20/i=46/a=465214
[15] F. Cao, X. Xu, W. Ren, C. Zhao, Theoretical Study of O2 Molecular Adsorption and Dissociation on Silicon Carbide Nanotubes, The Journal of Physical Chemistry C. 114 (2010) 970-976. https://doi.org/10.1021/jp910025y
[16] G. Mpourmpakis, G.E. Froudakis, G.P. Lithoxoos, Samios J., SiC Nanotubes: A Novel Material for Hydrogen Storage, Nano Letters. 6 (2006) 1581-1583. https://doi.org/10.1021/nl0603911
[17] J.-m. Jia, S.-p. Ju, D.-n. Shi, K.-f. Lin, CO adsorption on a zigzag SiC nanotube: effects of concentration density and local torsion on transport, Journal of Nanoparticle Research. 15 (2013) 1977.
[18] R.Q. Wu, M. Yang, Y.H. Lu, Y.P. Feng, Z.G. Huang, Q.Y Wu., Silicon Carbide Nanotubes As Potential Gas Sensors for CO and HCN Detection, The Journal of Physical Chemistry C. 112 (2008) 15985-15988. https://doi.org/10.1021/jp804727c
[19] G. Gao, H.S. Kang, First Principles Study of NO and NNO Chemisorption on Silicon Carbide Nanotubes and Other Nanotubes, Journal of Chemical Theory and Computation. 4 (2008) 1690-1697. https://doi.org/10.1021/ct800273c
[21] M.D. Ganji, N. Seyed-aghaei, M.M. Taghavi, M. Rezvani, F. Kazempour, Ammonia Adsorption on SiC Nanotubes: A Density Functional Theory Investigation, Fullerenes, Nanotubes and Carbon Nanostructures. 19 (2011) 289-299. https://doi.org/10.1080/15363831003721740
[25] G.G. Fuentes, E. Borowiak-Palen, M. Knupfer, T. Pichler, J. Fink, L. Wirtz, A. Rubio, Formation and electronic properties of ${text{BC}}_{3}$ single-wall nanotubes upon boron substitution of carbon nanotubes, Physical Review B 69 (2004) 245403. https://link.aps.org/doi/10.1103/PhysRevB.69.245403
[28] Z. Weng-Sieh, K. Cherrey, N.G. Chopra, X. Blase, Y. Miyamoto, A. Rubio, M.L. Cohen, S.G. Louie, A. Zettl, R. Gronsky, Synthesis of ${mathrm{B}}_{mathit{x}}$${mathrm{C}}_{mathit{y}}$${mathrm{N}}_{mathit{z}}$ nanotubules, Physical Review B. 51 (1995) 11229-11232. https://link.aps.org/doi/10.1103/PhysRevB.51.11229
[31] S. Jalili, M. Akhavan, J. Schofield, Electronic and Structural Properties of BC3 Nanotubes with Defects, The Journal of Physical Chemistry C. 116 (2012) 13225-13230. https://doi.org/10.1021/jp303184q
[33] S.C. Chen, I.Y. Chen, Y.H. Ho, M.F. Lin, Optical properties of BC3 nanotubes, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 24 (2006) 46-49. https://avs.scitation.org/doi/abs/10.1116/1.2138721
[34] A. Ahmadi Peyghan, M. Bigdeli Tabar, J. Kakemam, NH3 on a BC3 nanotube: Effect of doping and decoration of aluminum, Journal of molecular modeling. 19 (2013).
[35] W. Odling, A Course of Practical Chemistry Arranged for the Use of Medical Students, Longmans, Green and Co., London, 1865.
[36] S. Singh, J.B. Dilawari, R. Vashist, H.S. Malhotra, B.K. Sharma, Aluminium phosphide ingestion, British medical journal (Clinical research ed.). 290 (1985) 1110-1111. https://www.ncbi.nlm.nih.gov/pubmed/3921126
[38] P. Gholamkhasi, N. Molaei, M. Noei, M. Rashidiani, Phosphine Detection by AlN Nanotube: DFT studies, Indian Journal of Fundamental and Applied Life Sciences. 4 (2014) 203-210.
[41] P. Buasaeng, W. Rakrai, B. Wanno, C. Tabtimsai, DFT investigation of NH3, PH3, and AsH3 adsorptions on Sc-, Ti-, V-, and Cr-doped single-walled carbon nanotubes, Applied Surface Science. 400 (2017) 506-514. http://www.sciencedirect.com/science/article/pii/S0169433216329464
[42] G. Paolo, B. Stefano, B. Nicola, C. Matteo, C. Roberto, C. Carlo, C. Davide, L.C. Guido, C. Matteo, D. Ismaila, C. Andrea Dal, G. Stefano de, F. Stefano, F. Guido, G. Ralph, G. Uwe, G. Christos, K. Anton, L. Michele, M.-S. Layla, M. Nicola, M. Francesco, M. Riccardo, P. Stefano, P. Alfredo, P. Lorenzo, S. Carlo, S. Sandro, S. Gabriele, P.S. Ari, S. Alexander, U. Paolo, M.W. Renata, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of Physics: Condensed Matter. 21 (2009) 395502. http://stacks.iop.org/0953-8984/21/i=39/a=395502
[45] J.-x. Zhao, Y.-h. Ding, Silicon Carbide Nanotubes Functionalized by Transition Metal Atoms: A Density-Functional Study, The Journal of Physical Chemistry C. 112 (2008) 2558-2564. https://doi.org/10.1021/jp073722m