[1] J. Njuguna, S. Siddique, L.B. Kwroffie, S. Piromrat, K. Addae-Afoakwa, U. Ekeh-Adegbotolu, G. Oluyemi, K. Yates, A.K. Mishra, L. Moller, The fate of waste drilling fluids from oil & gas industry activities in the exploration and production operations, Waste Management 139 (2022) 362-380. https://doi.org/10.1016/j.wasman.2021.12.025
[2] S.R. Smith, R. Rafati, A.S. Haddad, A. Cooper, H. Hamidi, Application of aluminium oxide nanoparticles to enhance rheological and filtration properties of water based muds at HPHT conditions, Colloids and Surfaces A: Physicochemical and Engineering Aspects 537 (2018) 361-71. https://doi.org/10.1016/j.colsurfa.2017.10.050
[3] F. Kamali, R. Saboori, S. Sabbaghi, Fe3O4-CMC nanocomposite performance evaluation as rheology modifier and fluid loss control characteristic additives in water-based drilling fluid, Journal of Petroleum Science and Engineering 205 (2021) 108912. https://doi.org/10.1016/j.petrol.2021.10892
[4] A. Katende, N.V. Boyou, I. Ismail, D.Z. Chung, F. Sagala, N. Hussein, et al., Improving the performance of oil based mud and water based mud in a high temperature hole using nanosilica nanoparticles, Colloids and Surfaces A: Physicochemical and Engineering Aspects 577 (2019) 645-73. https://doi.org/10.1016/j.colsurfa.2019.05.088
[5] E. Leusheva, V. Morenov, Effect of Temperature Conditions in Arctic Offshore Oil Fields on the Rheological Properties of Various Based Drilling Muds, Energies 15 15 (2022) 5750. https://doi.org/10.3390/en15155750
[6] L. Fu, K. Liao, B. Tang, L. Jiang, W. Huang, Applications of graphene and its derivatives in the upstream oil and gas industry: A systematic review, Nanomaterials 10 6 (2020) 1013. https://doi.org/10.3390/nano10061013
[8] R. Ikram, B. Mohamed Jan, J. Vejpravova, M.I. Choudhary, Z. Zaman Chowdhury, Recent advances of graphene-derived nanocomposites in water-based drilling fluids, Nanomaterials 10 10 (2020) 2004. https://doi.org/10.3390/nano10102004
[9] M.A.A. Alvi, M. Belayneh, S. Bandyopadhyay, M.W. Minde, Effect of iron oxide nanoparticles on the properties of water-based drilling fluids, Energies 13 24 (2020) 6718. https://doi.org/10.3390/en13246718
[10] A. Ettehadi, C. Ülker, G. Altun, Nonlinear viscoelastic rheological behavior of bentonite and sepiolite drilling fluids under large amplitude oscillatory shear, Journal of Petroleum Science and Engineering 208 (2022) 109210. https://doi.org/10.1016/j.petrol.2021.10920
[11] F. Farahbod, Experimental investigation of thermo-physical properties of drilling fluid integrated with nanoparticles: Improvement of drilling operation performance, Powder Technology 384 (2021) 125-131. https://doi.org/10.1016/j.powtec.2021.02.02
[12] H. Movahedi, S. Jamshidi, M. Hajipour, New Insight into the Filtration Control of Drilling Fluids Using a Graphene-Based Nanocomposite under Static and Dynamic Conditions, ACS Sustainable Chemistry & Engineering 9 (2021) 12844–12857. https://doi.org/10.1021/acssuschemeng.1c03563
[13] H. Mao, Z. Qiu, Z. Shen, W. Huang, Hydrophobic associated polymer based silica nanoparticles composite with coreeshell structure as a filtrate reducer for drilling fluid at ultra-high temperature, Journal of Petroleum Science and Engineering 129 (2015) 1-14. https://doi.org/10.1016/j.petrol.2015.03.003
[15] X. Huang, J. Sun, K. Lv, J. Liu, H. Shen, F. Zhang, Application of core-shell structural acrylic resin/nano-SiO2 composite inwater based drilling fluid to plug shale pores, Journal of Natural Gas Science and Engineering 55 (2018) 418-25. https://doi.org/10.1016/j.jngse.2018.05.023
[16] A. Aftab, A.R. Ismail, S. Khokhar, Z.H. Ibupoto, Novel zinc oxide nanoparticles deposited acrylamide composite used for enhancing the performance of water-based drilling fluids at elevated temperature conditions, Journal of Petroleum Science and Engineering 146 (2016) 1142-57. https://doi.org/10.1016/j.petrol.2016.08.014
[17] J.G. Xu, Z.S. Qiu, X. Zhao, H.Y. Zhong, G.R. Li, W.A. Huang, Synthesis and characterization of shale stabilizer based on polyethylene glycol grafted nano-silica composite in waterbased drilling fluids, Journal of Petroleum Science and Engineering 163 (2018) 371-7. https://doi.org/10.1016/j.petrol.2018.01.007
[18] H. Mao, Z. Qiu, Z. Shen, W. Huang, H. Zhong, W. Dai, Novel hydrophobic associated polymer based nano-silica composite with coreeshell structure for intelligent drilling fluid under ultra-high temperature and ultra-high pressure, journal of Progress in Natural Science 25 1 (2015) 90-3. https://doi.org/10.1016/j.pnsc.2015.01.013
[19] S. Mosivand, I. Kazeminezhad, Magnetite nanoparticles functionalized with polypyrrole by pulsed sono-electrocrystallization and their applications for water treatment, Journal of Materials Science: Materials in Electronics 29 (2018) 12466–12476. 10.1007/s10854-018-9365-9
[20] S. Mosivand, I. Kazeminezhad, The Effect of Current on Structural and Magnetic Properties of Electrocrystalized Magnetite Nanoparticles in The Presence of Ultrasound Waves, Journal of Physics on Many-body Systems 9 (2015) 41-51. doi:10.22055/jrmbs.2015.11385
[21] S. Mosivand, I. Kazeminezhad, Synthesis of Electrocrystallized Cobalt Ferrite Nanopowders by Tuning the Cobalt Salt Concentration, RSC Advances 5 (2015) 14796-14803. doi:10.1039/c4ra17162d
[22] S. Mosivand, I. Kazeminezhad, Functionalization and Characterization of Electrocrystallized Iron Oxide Nanoparticles in the Presence of β-cyclodextrine, CrystEngComm 18 (2016) 417-426. doi:10.1039/c5ce01789k
[23] S. Mosivand, L.M.A. Monzon, K. Ackland, I.Kazeminezhad, J.M.D. Coey, Structural and Magnetic Properties of Sonoelectrocrystallized Magnetite Nanoparticles, Journal of Physics D:Applied Physics 47 (2014) 1-13. doi:10.1088/0022-3727/47/5/055001
[24] S. Mosivand, L.M.A. Monzon, I. Kazeminezhad, J.M.D. Coey, The Effect of Organics on the Structure and Magnetization of Electro-synthesised Magnetite Nanoparticles, Journal of Nanoparticle Research 15 (2013) 1-11. doi:10.1007/s11051-013-1795-y
[25] S. Mosivand, L.M.A. Monzon, I. Kazeminezhad, J.M.D. Coey, Influence of Growth Conditions on Magnetic and Structural Properties of Magnetite Nanoparticles Electrocrystallized in the Presence of Organic Molecules, International Journal of Molecular Sciences 14 (2013) 10383-10396. doi:10.3390/ijms140510383
[26] S. Piri Fathabad, S. Mosivand, I. Kazeminezhad, Synthesis and Characterization of Electro-Crystallized Alumina Nanoparticles and Investigation of Their Application in Removal of Cobalt and Cadmium from Seimareh and Karoon Rivers in Iran, The Journal of Electronic Materials 47 (2018) 7034-7052. doi: 10.1007/s11664-018-6630-x
[27] S. Mosivand, Effect of mineral additives on magnetite nanoparticles prepared in an electrolytic cell, Advanced Powder Technology 32 (2021) 432–444. https://doi.org/10.1016/j.apt.2020.12.020
[28] K. Garavand, S. Mosivand, Electro‑crystallized NiO nanoparticles for river‑water treatment applications, Applied Physics A 127 (2021) 73. https://doi.org/10.1007/s00339-020-04185-y
[29] S. Iranshahi, S. Mosivand, Cobalt/graphene oxide nanocomposites: Electro-synthesis, structural, magnetic, and electrical properties, Ceramics International 48 (2022) 12240–12254. https://doi.org/10.1016/j.ceramint.2022.01.086
[30] M. Kooti, A. Naghdi Sedeh, Kh Gheisari, A. Figuerola, Synthesis, characterization, and performance of nanocomposites containing reduced graphene oxide, polyaniline, and cobalt ferrite, Physica B 612 (2021) 412974. https://doi.org/10.1016/j.physb.2021.412974.
[31] G.Z. Papageorgiou, Z. Terzopoulou, D. Bikiaris, K.S. Triantafyllidis, E. Diamanti, D. Gournis, P. Klonos, E. Giannoulidis, P. Pissis, Evaluation of the formed interface in biodegradable poly(L-lactic acid)/graphene oxide nanocomposites and the effect of nanofillers on mechanical and thermal properties, Thermochimica Acta 597 (2014) 48–57. doi:10.1016/j.tca.2014.10.007.
[32] S. Tanwar, D. Mathur, Magnetite-graphene oxide nanocomposites: facile synthesis and characterization of optical and magnetic property, Materials Today: Proceedings 30 (2020) 17–22. https://doi.org/10.1016/j.matpr.2020.03.745
[34] J. Abdo, M. Haneef, Clay nanoparticles modified drilling fluids for drilling of deep hydrocarbon wells, Applied Clay Science 86 (2013) 76-82. https://doi.org/10.1016/j.clay.2013.10.017
[35] S.S. Hassani, A. Amrollahi, A. Rashidi, M. Soleymani, S. Rayatdoost, The effect of nanoparticles on the heat transfer properties of drilling fluids, Journal of Petroleum Science and Engineering 146 (2016) 183-190. https://doi.org/10.1016/j.petrol.2016.04.009
[36] J. Nasser, A. Jesil, T. Mohiuddin, M. Al Ruqeshi, G. Devi, S. Mohataram, Experimental investigation of drilling fluid performance as nanoparticles, World Journal of Nano Science and Engineering 3 (2013) 57-61. https://doi.org/10.4236/wjnse.2013.33008
[37] A.-M. Needaa, P. Pourafshary, A.-H. Hamoud, A. Jamil, Controlling bentonite-based drilling mud properties using sepiolite nanoparticles, Petroleum Exploration and Development 43 4 (2016) 717-723. https://doi.org/10.1016/S1876-3804(16)30084-2
[38] A. Nizamani, A.R. Ismail, R. Junin, A. Dayo, A. Tunio, Z. Ibupoto, M. Sidek, Synthesis of titaniabentonite nano composite and its applications in water-based drilling fluids, Chemical Engineering Transactions 56 (2017) 949-954. https://doi.org/10.3303/CET1756159
[39] R. Jain, V. Mahto, V. Sharma, Evaluation of polyacrylamide-grafted-polyethylene glycol/silica nanocomposite as potential additive in water based drilling mud for reactive shale formation, Journal of Natural Gas Science and Engineering 26 (2015) 526-537. https://doi.org/10.1016/j.jngse.2015.06.051