اثر نانوکامپوزیت اکسید گرافن/کبالت بر خواص رئولوژی سیال حفاری

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 گروه فیزیک، دانشکده علوم پایه، دانشگاه لرستان، خرم‌آباد، ایران

2 گروه شیمی، دانشکده علوم پایه، دانشگاه لرستان، خرم‌آباد، ایران

چکیده

نانوکامپوزیت اکسید گرافن/کبالت با روش الکترواکسیداسیون ساخته شد و مورد مشخصه‌یابی ساختاری و مغناطیسی قرار گرفت. سپس اثر نانوکامپوزیت تولید شده بر خواص رئولوژی دو نوع سیال حفاری محتوی بنتونیت و صمغ طبیعی بررسی شد. نانوکامپوزیت به‌دست آمده با استفاده از XRD، FT-IR، SEM و VSM مشخصه‌یابی شد. نتایج XRD تشکیل ساختار نانوکامپوزیت اکسیدگرافن/کبالت را تأیید کرد. تصاویر میکروسکوپ الکترونی روبشی نشان‌دهندة شکل پولکی نانوذرات کبالت است که بر روی صفحات اکسید گرافن جایگزیده شده‌اند. طبق نتایج حاصل از VSM، مغناطش اشباع emu/g 167.04، پسماند مغناطیسی emu/g 9.94 و میدان وادارندگی Oe 142.5 تعیین شد. به‌منظور بررسی اثر نانوکامپوزیت اکسید گرافن/کبالت بر خواص رئولوژی دو نوع سیال حاوی بنتونیت و صمغ طبیعی، 0.1، 0.3 و 0.5 گرم از این نانوکامپوزیت به‌سیالات حفاری افزوده شد و خواص رئولوژی آنها با استفاده از دستگاه ویسکومتر هشت سرعته در سه دمای 50،23 و70 درجة سانتیگراد مورد بررسی قرار گرفت. نانوکامپوزیت اکسیدگرافن/کبالت در نمونه‌های بنتونیتی باعث افزایش ویسکوزیتة ظاهری، ویسکوزیتة پلاستیک، نقطه واروی و استحکام ژله‌ای به‌ترتیب تا حدود مقادیرcp  108،  cp17،  lb/100ft2165 و lb/100ft2170 و در نمونه‌های صمغی باعث کاهش این پارامترها به‌ترتیب تا حدود مقادیر cp 70،  cp32،  lb/100ft242 و  lb/100ft25 می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of graphene Oxide/Cobalt nanocomposite on the Rheological properties of drilling fluid

نویسندگان [English]

  • Mahboobeh Ghaemi 1
  • Saba Mosivand 1
  • , Keivan Javanmard 2
1 Department of Physics, Faculty of Basic Sciences, Lorestan University, Khorram-Abad, Iran
2 Department of Chemistry,, Faculty of Basic Sciences,, Lorestan University,, Khorram Abad, Iran
چکیده [English]

Graphene oxide/cobalt nanocomposite was synthesized using the electrooxidation method and its structural and magnetic properties were specified. The effect of the produced nanocomposite on the rheological properties of drilling fluids containing bentonite and natural gum was investigated. The nanocomposite was characterized using XRD, FT-IR, SEM and VSM. XRD results confirmed the formation of graphene oxide/cobalt nanocomposite. The SEM images show the scaly shape of cobalt nanoparticles substituted on the graphene oxide sheets. Based on VSM results, the saturation magnetization, remance magnetization and coercive field were determined to be 167.04 emu/g, 9.94 emu/g, and 142.5 Oe, respectively. In order to investigate the effect of graphene oxide/cobalt nanocomposite on the rheological properties of two types of fluids containing bentonite and natural gum, 0.1, 0.3, and 0.5 gr of nanocomposite were added to drilling fluids and their rheological properties were measured using an eight-speed viscometer at three temperatures of 23oC, 50oC and 70oC. Graphene oxide/cobalt nanocomposite in the bentonite samples increases the apparent viscosity, plastic viscosity, yield point, and gel strength up to 108 cp, 17 cp, 165 lb/100ft2, and 170 lb/100ft2, respectively, and decreases these parameters in the samples containing natural gum down to 70 cp, 32 cp, 42 lb/100ft2, and 5 lb/100ft2, respectively.

کلیدواژه‌ها [English]

  • Graphene oxide/cobalt nanocomposite
  • Drilling fluid
  • Bentonite
  • Natural gum
  • Rheological properties
[1] J. Njuguna, S. Siddique, L.B. Kwroffie, S. Piromrat, K. Addae-Afoakwa, U. Ekeh-Adegbotolu, G. Oluyemi, K. Yates, A.K. Mishra, L. Moller, The fate of waste drilling fluids from oil & gas industry activities in the exploration and production operations, Waste Management 139 (2022) 362-380. https://doi.org/10.1016/j.wasman.2021.12.025
[2] S.R. Smith, R. Rafati, A.S. Haddad, A. Cooper, H. Hamidi, Application of aluminium oxide nanoparticles to enhance rheological and filtration properties of water based muds at HPHT conditions, Colloids and Surfaces A: Physicochemical and Engineering Aspects 537 (2018) 361-71. https://doi.org/10.1016/j.colsurfa.2017.10.050
[3] F. Kamali, R. Saboori, S. Sabbaghi, Fe3O4-CMC nanocomposite performance evaluation as rheology modifier and fluid loss control characteristic additives in water-based drilling fluid, Journal of Petroleum Science and Engineering 205 (2021) 108912. https://doi.org/10.1016/j.petrol.2021.10892
[4] A. Katende, N.V. Boyou, I. Ismail, D.Z. Chung, F. Sagala, N. Hussein, et al., Improving the performance of oil based mud and water based mud in a high temperature hole using nanosilica nanoparticles, Colloids and Surfaces A: Physicochemical and Engineering Aspects 577 (2019) 645-73. https://doi.org/10.1016/j.colsurfa.2019.05.088
[5] E. Leusheva, V. Morenov, Effect of Temperature Conditions in Arctic Offshore Oil Fields on the Rheological Properties of Various Based Drilling Muds, Energies 15 15 (2022) 5750. https://doi.org/10.3390/en15155750
[6] L. Fu, K. Liao, B. Tang, L. Jiang, W. Huang, Applications of graphene and its derivatives in the upstream oil and gas industry: A systematic review, Nanomaterials 10 6 (2020) 1013. https://doi.org/10.3390/nano10061013
[7] N. Alimohammadi, S.R. Shadizadeh, I. Kazeminezhad, Removal of cadmium from drilling fluid using nanoadsorbent, Fuel 111 (2013) 505-9. https://doi.org/10.1016/j.fuel.2013.03.023
[8] R. Ikram, B. Mohamed Jan, J. Vejpravova, M.I. Choudhary, Z. Zaman Chowdhury, Recent advances of graphene-derived nanocomposites in water-based drilling fluids, Nanomaterials 10 10 (2020) 2004. https://doi.org/10.3390/nano10102004
[9] M.A.A. Alvi, M. Belayneh, S. Bandyopadhyay, M.W. Minde, Effect of iron oxide nanoparticles on the properties of water-based drilling fluids, Energies 13 24 (2020) 6718. https://doi.org/10.3390/en13246718
[10] A. Ettehadi, C. Ülker, G. Altun, Nonlinear viscoelastic rheological behavior of bentonite and sepiolite drilling fluids under large amplitude oscillatory shear, Journal of Petroleum Science and Engineering 208 (2022) 109210. https://doi.org/10.1016/j.petrol.2021.10920
[11] F. Farahbod, Experimental investigation of thermo-physical properties of drilling fluid integrated with nanoparticles: Improvement of drilling operation performance, Powder Technology 384 (2021)  125-131. https://doi.org/10.1016/j.powtec.2021.02.02
[12] H. Movahedi, S. Jamshidi, M. Hajipour, New Insight into the Filtration Control of Drilling Fluids Using a Graphene-Based Nanocomposite under Static and Dynamic Conditions, ACS Sustainable Chemistry & Engineering 9 (2021) 12844–12857. https://doi.org/10.1021/acssuschemeng.1c03563
[13] H. Mao, Z. Qiu, Z. Shen, W. Huang, Hydrophobic associated polymer based silica nanoparticles composite with coreeshell structure as a filtrate reducer for drilling fluid at ultra-high temperature, Journal of Petroleum Science and Engineering 129 (2015) 1-14. https://doi.org/10.1016/j.petrol.2015.03.003
[14] G. Cheraghian, Nanoparticles in drilling fluid: A review of the state-of-the-art, Journal of materials research and technology 13 (2021) 737-753. https://doi.org/10.1016/J.JMRT.2021.04.089
[15] X. Huang, J. Sun, K. Lv, J. Liu, H. Shen, F. Zhang, Application of core-shell structural acrylic resin/nano-SiO2 composite inwater based drilling fluid to plug shale pores, Journal of Natural Gas Science and Engineering 55 (2018) 418-25. https://doi.org/10.1016/j.jngse.2018.05.023
[16] A. Aftab, A.R. Ismail, S. Khokhar, Z.H. Ibupoto, Novel zinc oxide nanoparticles deposited acrylamide composite used for enhancing the performance of water-based drilling fluids at elevated temperature conditions, Journal of Petroleum Science and Engineering 146 (2016) 1142-57. https://doi.org/10.1016/j.petrol.2016.08.014
[17] J.G. Xu, Z.S. Qiu, X. Zhao, H.Y. Zhong, G.R. Li, W.A. Huang, Synthesis and characterization of shale stabilizer based on polyethylene glycol grafted nano-silica composite in waterbased drilling fluids, Journal of Petroleum Science and Engineering 163 (2018) 371-7. https://doi.org/10.1016/j.petrol.2018.01.007
[18] H. Mao, Z. Qiu, Z. Shen, W. Huang, H. Zhong, W. Dai, Novel hydrophobic associated polymer based nano-silica composite with coreeshell structure for intelligent drilling fluid under ultra-high temperature and ultra-high pressure, journal of Progress in Natural Science 25 1 (2015) 90-3. https://doi.org/10.1016/j.pnsc.2015.01.013
[19] S. Mosivand, I. Kazeminezhad, Magnetite nanoparticles functionalized with polypyrrole by pulsed sono-electrocrystallization and their applications for water treatment, Journal of Materials Science: Materials in Electronics 29 (2018) 12466–12476. 10.1007/s10854-018-9365-9
[20] S. Mosivand, I. Kazeminezhad, The Effect of Current on Structural and Magnetic Properties of Electrocrystalized Magnetite Nanoparticles in The Presence of Ultrasound Waves, Journal of Physics on Many-body Systems 9 (2015) 41-51. doi:10.22055/jrmbs.2015.11385
[21] S. Mosivand, I. Kazeminezhad, Synthesis of Electrocrystallized Cobalt Ferrite Nanopowders by Tuning the Cobalt Salt Concentration, RSC Advances 5 (2015) 14796-14803. doi:10.1039/c4ra17162d
[22] S. Mosivand, I. Kazeminezhad, Functionalization and Characterization of Electrocrystallized Iron Oxide Nanoparticles in the Presence of β-cyclodextrine, CrystEngComm 18 (2016) 417-426. doi:10.1039/c5ce01789k
[23] S. Mosivand, L.M.A. Monzon, K. Ackland, I.Kazeminezhad, J.M.D. Coey, Structural and Magnetic Properties of Sonoelectrocrystallized Magnetite Nanoparticles, Journal of Physics D:Applied Physics 47 (2014) 1-13. doi:10.1088/0022-3727/47/5/055001
[24] S. Mosivand, L.M.A. Monzon, I. Kazeminezhad, J.M.D. Coey, The Effect of Organics on the Structure and Magnetization of Electro-synthesised Magnetite Nanoparticles, Journal of Nanoparticle Research 15 (2013) 1-11. doi:10.1007/s11051-013-1795-y
[25] S. Mosivand, L.M.A. Monzon, I. Kazeminezhad, J.M.D. Coey, Influence of Growth Conditions on Magnetic and Structural Properties of Magnetite Nanoparticles Electrocrystallized in the Presence of Organic Molecules, International Journal of Molecular Sciences 14 (2013) 10383-10396. doi:10.3390/ijms140510383
[26] S. Piri Fathabad, S. Mosivand, I. Kazeminezhad, Synthesis and Characterization of Electro-Crystallized Alumina Nanoparticles and Investigation of Their Application in Removal of Cobalt and Cadmium from Seimareh and Karoon Rivers in Iran, The Journal of Electronic Materials 47 (2018) 7034-7052. doi: 10.1007/s11664-018-6630-x
[27] S. Mosivand, Effect of mineral additives on magnetite nanoparticles prepared in an electrolytic cell, Advanced Powder Technology 32 (2021) 432–444. https://doi.org/10.1016/j.apt.2020.12.020
[28] K. Garavand, S. Mosivand, Electro‑crystallized NiO nanoparticles for river‑water treatment applications, Applied Physics A 127 (2021) 73. https://doi.org/10.1007/s00339-020-04185-y
[29] S. Iranshahi, S. Mosivand, Cobalt/graphene oxide nanocomposites: Electro-synthesis, structural, magnetic, and electrical properties, Ceramics International 48 (2022) 12240–12254. https://doi.org/10.1016/j.ceramint.2022.01.086
[30] M. Kooti, A. Naghdi Sedeh, Kh Gheisari, A. Figuerola, Synthesis, characterization, and performance of nanocomposites containing reduced graphene oxide, polyaniline, and cobalt ferrite, Physica B 612 (2021) 412974. https://doi.org/10.1016/j.physb.2021.412974.
[31] G.Z. Papageorgiou, Z. Terzopoulou, D. Bikiaris, K.S. Triantafyllidis, E. Diamanti, D. Gournis, P. Klonos, E. Giannoulidis, P. Pissis, Evaluation of the formed interface in biodegradable poly(L-lactic acid)/graphene oxide nanocomposites and the effect of nanofillers on mechanical and thermal properties, Thermochimica Acta 597 (2014) 48–57. doi:10.1016/j.tca.2014.10.007.
[32] S. Tanwar, D. Mathur, Magnetite-graphene oxide nanocomposites: facile synthesis and characterization of optical and magnetic property, Materials Today: Proceedings 30 (2020) 17–22. https://doi.org/10.1016/j.matpr.2020.03.745
[34] J. Abdo, M. Haneef, Clay nanoparticles modified drilling fluids for drilling of deep hydrocarbon wells, Applied Clay Science 86 (2013) 76-82. https://doi.org/10.1016/j.clay.2013.10.017
[35] S.S. Hassani, A. Amrollahi, A. Rashidi, M. Soleymani, S. Rayatdoost, The effect of nanoparticles on the heat transfer properties of drilling fluids, Journal of Petroleum Science and Engineering 146 (2016) 183-190. https://doi.org/10.1016/j.petrol.2016.04.009
[36] J. Nasser, A. Jesil, T. Mohiuddin, M. Al Ruqeshi, G. Devi, S. Mohataram, Experimental investigation of drilling fluid performance as nanoparticles, World Journal of Nano Science and Engineering 3 (2013) 57-61. https://doi.org/10.4236/wjnse.2013.33008
[37] A.-M. Needaa, P. Pourafshary, A.-H. Hamoud, A. Jamil, Controlling bentonite-based drilling mud properties using sepiolite nanoparticles, Petroleum Exploration and Development 43 4 (2016) 717-723. https://doi.org/10.1016/S1876-3804(16)30084-2
[38] A. Nizamani, A.R. Ismail, R. Junin, A. Dayo, A. Tunio, Z. Ibupoto, M. Sidek, Synthesis of titaniabentonite nano composite and its applications in water-based drilling fluids, Chemical Engineering Transactions 56 (2017) 949-954. https://doi.org/10.3303/CET1756159
[39] R. Jain, V. Mahto, V. Sharma, Evaluation of polyacrylamide-grafted-polyethylene glycol/silica nanocomposite as potential additive in water based drilling mud for reactive shale formation, Journal of Natural Gas Science and Engineering 26 (2015) 526-537. https://doi.org/10.1016/j.jngse.2015.06.051