[1] R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, Quantum entanglement, Reviews of Modern Physics 81 (2009) 865-942.
[2] M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information, Cambridge University Press, (2000).
[3] M. Plesch and V. Bužek, Entagled graph: Bipartite entanglement in multiqubit systems, Physical Review A 67 (2003) 012322, pp. 1-6.
[4] W. Dür, Multipartite entanglement that is robust against disposal of particles, Physical Review A 63 (2001) 020303(R) pp. 1-4.
[5] C. Sabín and G. García-Alcaine, A classification of entanglement in three-qubit systems, The European Physical Journal D 48 (2008) 435-442.
[6] P. Jakubczyk, Y. Kravets, and D. Jakubczyk, Entanglement of one-magnon Schur-Weyl states, The European Physical Journal D 61 (2011) 507-512.
[7] M. Gharahi Ghahi and S.J. Akhtarshenas, Entangled graphs: a classification of four-qubit entanglement, The European Physical Journal D 70 (2016) 54-59.
[8] L. Assadi and M. Jafarpour, Classification of 4-qubit entagled graph states according to bipartite entanglement, multipartite entanglement and non-local properties,International Journal of Theoretical Physics 55 (2016) 4809-4821.
[9] R. Diestel, Graph theory, Springer, Heidelberg, (2010).
[10] M. Hein, J. Eisert and H.J. Briegel, Multiparty entanglement in graph states, Physical Review A69 (2004) 062311, pp. 1-20.
[11] M. Hein, W. Dur, J. Eisert, R. Raussendorf, M. Van den Nest and H.J. Briegel, Entanglement in graph states and its application, Proc. Int. School Phys. Enrico Fermi. Quantum Computers, Algorithms and Chaos. 162 (2006), pp. 1-115.
[12] H. Ma, F. Li, N. Mao, et al., Network-based arbitrated quantum signature scheme with graph State, International Journal of Theoretical Physics 56 (2017) 2551-2561.
[13] L. Jian-Wu, L. Xiao-Shu, S. Jin-Jing, et al., Multiparty quantum blind signature scheme based on graph states, International Journal of Theoretical Physics 57 (2018) 2404-2414.
[14] A. Akhound, S. Haddadi and M.A.Chaman Motlagh, Calculation of entanglement in graph states up to five-qubit based on generalized concurrence, arXiv:1610.02560 (2016), 1-5.
[15] S. Hill and W.K. Wootters, Entanglement of a pair of quantum bits, Physical Review Letters 78 (1997) 5022-5025.
[16] W.K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Physical Review Letters 80 (1998) 2245-2248.
[17] A.R.R. Carvalho et al., Decoherence and multipartite entanglement, Physical Review Letters 93 (2004) 230501, 1-4.
[18] X.N. Zhu and Sh.M. Fei, Lower bound of concurrence for qubit systems,Quantum Information Processing 13 (2014) 815-823.
[19] X.N. Zhu, M. Li and Sh.M. Fei, A lower bound of concurrence for multipartite quantum systems, Quantum Information Processing 17 (2018) 30-39.
[20] D.A. Meyer and N.R. Wallach, Global entanglement in multiparticle systems, Journal of Mathematical Physics 43 (2002) 4273-4278.
[21] P.J. Love, et al., A characterization of global entanglement, Quantum Information Processing 6 (2007) 187-195.
[22] A.J. Scott, Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions,Physical Review A 69 (2004) 052330, 1-10.