تحلیل QCD تابع ساختار غیریکتای xF3 در پراکندگی ناکشسان ژرف نوترینو-نوکلئون

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 گروه فیزیک، دانشکده علوم پایه، دانشگاه سمنان

2 گروه فیزیک ، دانشکده فیزیک ، دانشگاه سمنان ، سمنان، ایران

چکیده

در این مقاله با استفاده از داده‌های تجربی گروه‌های ‏‎ CDHSWوCHORUS‏ ‏CCFR, NuTeV,‎‏ برآنیم تا توابع توزیع ‏ظرفیتی کوارک‌های ‏‎ u ‎و ‏d‏ را در طیف گسترده‌ای از ‏x‏ و2^Q‏ تعیین و آن‌ها را به‌همراه خطاهای همبسته در چارچوب ‏xFitter‏ استخراج کنیم. ما نتایج را برای توابع توزیع کوارک ظرفیتی به‌همراه عدم قطعیت آن‌ها استخراج نموده و با دیگر ‏مدل‌های مختلف مقایسه می‌کنیم. نتایج محاسبات ما برای ثابت جفت‌شدگی قوی در دو تقریب ‏NLO‏ و ‏NNLO‏ با نتایج ‏مدل‌های مختلف و نتایج اخیرPDG ‎‏ در توافق است. نتایج استخراج شده برای توزیع کوارک ظرفیتی با مدل‌های نظری ‏موجود سازگاری خوبی دارد.‏

کلیدواژه‌ها


عنوان مقاله [English]

QCD analysis of non-singlet structure function xF3 in deep inelastic neutrino-nucleon scattering

نویسندگان [English]

  • azam ghaffari tooran 1
  • Ali Khorramian 2
1 Physics Department, Semnan University, P.O. Box: 35131-19111, Semnan- Iran
2 Physics Department, Semnan University, P.O. Box: 35131-19111, Semnan- Iran
چکیده [English]

In this paper we intend to determine valence quarks distribution functions u ,d in a wide ‎range of x and Q‏2‏‎, with using experimental data groups such as CCFR, NuTeV, CHORUS ‎and CDHSW , and‏ ‏determine their correlated errors using xFitter framework. We ‎extracted‎ the results for valence quarks distribution functions‎‏ ‏with their uncertainties‎ and ‎compared them with other models. Our results are in agreement with the results of other ‎various models and recent PDG results for strong coupling‏ ‏constant in two approximations ‎NLO and NNLO. The extracted results for valence-quark distributions are in good ‎agreement with available theoretical models.‎

کلیدواژه‌ها [English]

  • QCD Analysis
  • Non-singlet Structure Function
  • Valence Quark
[1] G. Altarelli, G. Parisi, Asymptotic Freedom in Parton Language, Nuclear Physic B 126 (1977) 298-318.
[2] S. Alekhin, J. Blumlein, S. Moch, Parton Distribution Functions and Benchmark Cross Sections at NNLO, Physical Review D 86 (2012) 054009.
[3] R.D. Ball, S. Forte, A. Guffanti, E.R. Nocera, G. Ridolfi, J. Rojo ,Unbiased determination of polarized parton distributions and their uncertainties, [NNPDF Collaboration], Nuclear Physic B 874 (2013) 36-84.
[4] N. Sato et al., Iterative Monte Carlo analysis of spin-dependent parton distributions, [Jefferson Lab Angular Momentum Collaboration], Physical Review D 93 7 (2016) 074005.
[5] F. Arbabifar, A.N. Khorramian, M. Soleymaninia, QCD analysis of polarized DIS and the SIDIS asymmetry world data and light sea-quark decomposition,Physical Review D 89 (2014) 034006.
[6] A.N. Khorramian, S. Atashbar Tehrani, S. Taheri Monfared, F. Arbabifar, F.I. Olness, Polarized Deeply Inelastic Scattering (DIS) Structure Functions for Nucleons and Nuclei, Physical Review D 83 (2011) 054017.
[7] A.N. Khorramian, A. Mirjalili, S.A. Tehrani, Next-to-leading order approximation of polarized valon and parton distributions, Journal of High Energy Physics 0410 (2004) 62-85.
[8] M. Soleymaninia, A.N. Khorramian, S. M. Moosavi Nejad, F. Arbabifar, Determination of pion and kaon fragmentation functions including spin asymmetries data in a global analysis, Physical Review D 88 (2013) 54019.
[9] J.P. Lees et al., [BaBar Collaboration], Measurement of angular asymmetries in the decays $B to K^*ℓ^+ℓ^-$, Physical Review D 93 (2016) 52015.
[10] W.G. Seligman et al., [CCFR Collaboration], Improved determination of alpha(s) from neutrino nucleon scattering Physical Review Letter 79 (1997) 1213-1216.
[11] M. Tzanov et al., [NuTeV Collaboration], Precise measurement of neutrino and anti-neutrino differential cross sections, Physical Review D 74 (2006) 12008.
[12] G. Onengut et al., [CHORUS Collaboration], Measurement of nucleon structure functions in neutrino scattering, Physical Letter B 632 (2006) 65-75.
[13] J.P. Berge et al., [CDHSW Collaboration], A Measurement of Differential Cross-Sections and Nucleon Structure Functions in Charged Current Neutrino Interactions on Iron, Zeitschrift für Physik C Particles and Fields 49 (1991) 187-223.
[14] M. Bonesini, Perspectives for Muon Colliders and Neutrino Factories, Frascati Physics Series 61 (2016) 11-16.
[15] D.M. Kaplan [MAP and MICE Collaborations], Muon Colliders and Neutrino Factories, European Physic Journal Web of Conference 95 (2015) 03019.
[16] S. Geer, Muon Colliders and Neutrino Factories, Ann. Review Nuclear Particle Science. 59 (2009) 347-365.
[17] J.L. Abelleira Fernandez et al., [LHeC Study Group], A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector, Journal Physics G 39 (2012) 075001.
[18] A. Deshpande, Z.E. Meziani, J.W. Qiu, Towards the next QCD Frontier with the Electron Ion Collider, European Physic Journal Web Conference 113 (2016) 05019.
[19] A. Accardi et al., Electron Ion Collider: The Next QCD Frontier: Understanding the glue that binds us all, European Physics Journal A 52 9 (2016) 268.
[20] A.L. Kataev, A.V. Kotikov, G. Parente, A.V. Sidorov, Next to next-to-leading order QCD analysis of the revised CCFR data for xF3 structure function and the higher twist contributions, Physical Letter B 417 (1998) 374-384.
[21] S.I. Alekhin, A.L. Kataev, The nlo DGLAP extraction of alpha(s) and higher twist terms from ccfr xf(3) and f(2) structure functions data for neutrino n dis, Physical Letter B 452 (1999) 402-408.
[22] S.I. Alekhin, A.L. Kataev, The nlo DGLAP extraction of alpha(s) and higher twist terms from ccfr x f(3) and f(2) structure functions: Results and scale dependence, Nuclear Physics A 666 (2000) 179-183.
[23] A.L. Kataev, G. Parente, A.V. Sidorov, Next-to-next-to-leading order fits to CCFR'97 x(F3) data and infrared renormalons, Journal Physics G 29 (2003) 1985-1988.
[24] A.V. Sidorov, O.P. Solovtsova, Nonlin. The QCD Analysis of $xF_3$ Structure Function Based on the Analytic Approach, Phenomenology Complex System 16 (2013) 397-402.
[25] A.N. Khorramian, H. Khanpour, S.A. Tehrani, Nonsinglet parton distribution functions from the precise next-to-next-to-next-to leading order QCD fit, Physical Review D 81 (2010) 014013.
[26] A.N. Khorramian, S.A. Tehrani, NNLO QCD contributions to the flavor non-singlet sector of F(2)(x,Q**2), Physical Review D 78 (2008) 074019.
[27] A.N. Khorramian, S. Atashbar Tehrani, The NNLO non-singlet QCD analysis of parton distributions based on Bernstein polynomials, Journal of  High Energy Physics 0703 (2007) 3551-3556.
[28] J. Santiago, F.J. Yndurain, Improved calculation of F(2) in electroproduction and xF(3) in neutrino scattering to NNLO and determination of alpha(s), Nuclear Physics B 611 (2001) 447-466.
[29] A. Ghasempour Nesheli, A. Mirjalili, M.M. Yazdanpanah, Analyzing the parton densities and constructing the xF$_{3}$ structure function, using the Laguerre polynomials expansion and Monte Carlo calculations, European Physic Journal Plus 130 4 (2015) 82-88.
[30] xFitter, An open source QCD fit framework. http://xFitter.org [xFitter.org].
[31] S. Alekhin et al., Open source QCD fit project, European Physic Journal C 75 7 (2015) 304-321.
[32] A. Sapronov, HERA Fitter-an open source QCD fit framework [HERAFitter Team Collaboration], Journal of Physics: Conference Series 608 1 (2015) 51-56.
[33] M. Salimi-Amiri, A. Khorramian, H. Abdolmaleki, F.I. Olness, Impact of recent COMPASS data on polarized parton distributions and structure functions, Physical Review D 98 (2018) 056020.
[34] A. Vafaee, A.N. Khorramian, The role of different schemes in the QCD analysis and determination of the strong coupling, Nuclear Physics B 921 (2017) 472-486.
[35] H. Abdolmaleki, A. Khorramian, A. Aleedaneshvar, Impact of intrinsic charm on PDFs with EMC and LHC data, Nuclear Particle Physics Process, 282 284 (2017) 27-31.
[36] A. Vafaee and A. Khorramian, Next-to-leading order QCD analysis of parton distribution functions with LHC data, Nuclear Particle Physics Process, 282 284 (2017) 32-36.
[37] S. Rostami, A. Khorramian, A. Aleedaneshvar, The impact of the intrinsic charm quark content of a proton on the differential $gamma +c$ cross section, Journal  Physics G 43 5 (2016) 055001.
[38] D. de Florian, R. Sassot, P. Zurita, M. Stratmann, Global Analysis of Nuclear Parton Distributions, Physical Review D 85 (2012) 074028 .
[39] M. Botje, QCDNUM: Fast QCD Evolution and Convolution, Computer Physics Communication 182 (2011) 490-532.
[40] J. Pumplin, D.R. Stump, W.K. Tung, Multivariate fitting and the error matrix in global analysis of data Physical Review D 65 (2001) 014011.
[41] C. Pascaud, F. Zomer, QCD analysis from the proton structure function F2 measurement: Issues on fitting, statistical and systematic errors, LAL (1995) 95-105.
[42] E. Perez, E. Rizvi, The Quark and Gluon Structure of the Proton, Reports on Progress in Physics 76 (2013) 046201.
[43] S. Dulat,  T.J. Hou, Jun Gao, Joey HustonP. NadolskyJ. PumplinC. SchmidtD. StumpC.P. Yuan , New parton distribution functions from a global analysis of quantum chromodynamics, Physical Review D 93 (2016) 033006.
[44] L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era, European  Physics Journal C 75 (2015) 204.
[45] M. Tanabashi ‎et al., [Particle Data Group], Review of Particle Physics, Physical Review D 98 3 (2018) 030001.