[1] D.J. Griffiths, Introduction to quantum mechanics, Pearson Prentice Hall, (2010).
[2] S.H. Dong, Factorization method in quantum mechanics, Springer, (2007).
[3] M. Aktas, R. Sever, Exact supersymmetric solution of Schrodinger equation for central confining potentials by using the Nikiforov-Uvarov method, Journal of Molecular Structure 710 (2004) 223-228. https://doi.org/10.1016/j.theochem.2004.09.011
[4] B.J. Falaye, K.J. Oyewumi, M. Abbas, Exact solution of Schrödinger equation with q-deformed quantum potentials using Nikiforov-Uvarov method, Chinese Physics B 22 (2013) 110301.
[5] H. Karayer, D. Demirhan, F. Büyükkılıç, Solution of Schrödinger equation for two different potentials using extended Nikiforov-Uvarov method and polynomial solutions of biconfluent Heun equation, Journal of Mathematical Physics 59 (2018) 053501. https://doi.org/10.1063/1.5022008
[6] C.O. Edet, P.O. Okoi, Any l-State Solutions of the Schrodinger Equation for q-Deformed Hulthen Plus Generalized Inverse Quadratic Yukawa Potential in Arbitrary Dimension, Revista Mexicana de Física 65 (2019) 333-344. https://doi.org/10.31349/RevMexFis.65.333
[7] E.E. Perepelkin, B.I. Sadovnikov, N.G. Inozemtseva, A.A. Tarelkin, A new class of exact solutions of the Schrödinger equation, Continuum Mechanics and Thermodynamics 31 (2019) 639-667. https://doi.org/10.1007/s00161-018-0716-9
[8] C.A. Onate, K.J. Oyewumi, B.J. Falaye, Approximate solutions of the Schrödinger equation with the hyperbolical potential: supersymmetric approach, Few-Body Systems 55 (2014) 61-67. http://dx.doi.org/10.1007/s00601-013-0731-0
[9] H. Hassanabadi, B.H. Yazarloo, S. Zarrinkamar, M. Solaimani, Approximate analytical versus numerical solutions of Schrödinger equation under molecular Hua potential, International Journal of Quantum Chemistry 112 (2012) 3706-3710. https://doi.org/10.1002/qua.24064
[10] R.H. Hammed, Approximate Solution of Schrödinger Equation With Manning–Rosen Potential in Two Dimensions by using the shifted 1/N expansion method, Journal of Basrah Researches (Sciences) 38 (2012) 51-59.
[11] D. Xu, J. Stare, A.L. Cooksy, Solving the vibrational Schrödinger equation on an arbitrary multidimensional potential energy surface by the finite element method, Computer Physics Communications 180 (2009) 2079-2094. https://doi.org/10.1016/j.cpc.2009.06.010
[12] S. Dong, J. Garcia-Ravelo, S.H. Dong, Analytical approximations to the l-wave solutions of the Schrödinger equation with an exponential-type potential, Physica Scripta 76 (2007) 393. https://doi.org/10.1088/0031-8949/76/4/019
[13] H. Egrifes, D. Demirhan, F. Büyükkiliç, Exact Solutions of the Schrödinger Equation for Two Deformed Hyperbolic Molecular Potentials, Physica Scripta 60 (1999) 195-198. https://doi.org/10.1238/PHYSICA.REGULAR.060A00195
[14] F. Yaşuk, C. Berkdemir, A. Berkdemir, Exact solutions of the Schrödinger equation with non-central potential by the Nikiforov–Uvarov method, Journal of Physics A: Mathematical and General 38 (2005) 6579. https://doi.org/10.1088/0305-470/38/29/012
[15] L. Chai, S. Jin, P.A. Markowich, A hybrid method for computing the Schrödinger equations with periodic potential with band-crossings in the momentum space, Communications in Computational Physics 24 (2018) 989-1020. https://doi.org/10.4208/cicp.2018.hh80.01
[16] U.S. Okorie, A.N. Ikot, M.C. Onyeaju, E.O. Chukwuocha, Bound state solutions of Schrödinger equation with modified Mobius square potential (MMSP) and its thermodynamic properties, Journal of molecular modeling 24 (2018) 289. https://doi.org/10.1007/s00894-018-3811-8
[17] C.A. Onate, J.O. Ojonubah, Eigensolutions of the Schrödinger equation with a class of Yukawa potentials via supersymmetric approach, Journal of Theoretical and Applied Physics 10 (2016) 21-26. https://doi.org/10.1007/s40094-015-0196-2
[18] S.M. Ikhdair, R. Sever, Bound states of a more general exponential screened Coulomb potential, Journal of mathematical chemistry 41 (2007) 343-353. https://doi.org/10.1007/s10773-008-9806-y
[19] C. Tezcan, R. Sever, A general approach for the exact solution of the Schrödinger equation, International Journal of Theoretical Physics 48 (2009) 337-350.
[20] S.M. Ikhdair, R. Sever, Exact solutions of the modified Kratzer potential plus ring-shaped potential in the D-dimensional Schrödinger equation by the Nikiforov–Uvarov method, International Journal of Modern Physics C 19 (2008) 221-235. https://doi.org/10.1142/S0129183108012030
[21] S.M. Ikhdair, R. Sever, Exact solutions of the D-dimensional Schrödinger equation for a ring-shaped pseudoharmonic potential, Central European Journal of Physics 6 (2008) 685-696. https://doi.org/10.2478/s11534-008-0024-2
[23] A. Sadighi, D.D. Ganji, Analytic treatment of linear and nonlinear Schrödinger equations: a study with homotopy-perturbation and Adomian decomposition methods, Physics Letters A 372 (2008) 465-469. https://doi.org/10.1016/j.physleta.2007.07.065
[24] N. Taghizadeh, M. Mirzazadeh, F. Farahrooz, Exact solutions of the nonlinear Schrödinger equation by the first integral method, Journal of Mathematical Analysis and Applications 374 (2011) 549-553. https://doi.org/10.1016/j.jmaa.2010.08.050
[25] S.O. Edeki, G.O. Akinlabi, S.A. Adeosun, On a modified transformation method for exact and approximate solutions of linear Schrödinger equations, In AIP Conference proceedings 1705 (2016). https://doi.org/10.1063/1.4940296
[27] N.K. Vitanov, Z.I. Dimitrova, Modified Method of Simplest Equation Applied to the Nonlinear Schrödinger Equation, Journal of Theoretical and Applied Mechanics 48 (2018) 59-68. https://doi.org/10.2478/jtam-2018-0005
[28] M.J. Mahmoodabadi, F. Shojaei, Z. Arasteh, Analysis of the Three-dimensional time-dependent Schrödinger equation by the meshless local Petrov- Galerkin method, Journal of Research on Many-Body Systems 8 17 (2018) 51-58.
[29] M. Dehghan, D. Mirzaei, The meshless local Petrov–Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrödinger equation, Engineering Analysis with Boundary Elements 32 (2008) 747-756. https://doi.org/10.1016/j.enganabound.2007.11.005
[30] M. Dehghan, A. Shokri, A numerical method for two-dimensional Schrödinger equation using collocation and radial basis functions, Computers & Mathematics with Applications 54 (2007) 136-146. https://doi.org/10.1016/j.camwa.2007.01.038
[31] A. Bashan, N.M. Yagmurlu, Y. Ucar, A. Esen, An effective approach to numerical soliton solutions for the Schrödinger equation via modified cubic B-spline differential quadrature method, Chaos, Solitons & Fractals 100 (2017) 45-56. https://doi.org/10.1016/j.chaos.2017.04.038
[32] A. Sóbester, P.B. Nair, A.J. Keane, Genetic programming approaches for solving elliptic partial differential equations, IEEE transactions on evolutionary computation 12 (2008) 469-478. https://doi.org/10.1109/TEVC.2007.908467
[33] J. Kennedy, R. Eberhart, Particle Swarm Optimization. In Proceedings of IEEE International Conference on Neural Networks 4 (1995) 1942-1948. https://doi.org/10.1109/ICNN.1995.488968
[34] M.J. Mahmoodabadi, Z.S. Mottaghi, A. Bagheri, HEPSO: high exploration particle swarm optimization, Information Sciences 273 (2014) 101-111.
[35] D.M. Causon, C.G. Mingham Introductory finite difference methods for PDEs. Ventus Publishing ApS (2010).
[36] R. Becerril, F.S. Guzmán, A. Rendón-Romero, & S. Valdez-Alvarado, Solving the time-dependent Schrödinger equation using finite difference methods, Revista mexicana de física E 54 2 (2008) 120-132.