هندسه‌ی ترمودینامیک سیاهچاله‌ی ‏AdS‏ باردار با آنتروپی تصحیح یافته ‏

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 گروه فیزیک، دانشکده صنعت و معدن، دانشگاه یاسوج، چرام 7576159836، ایران

2 گروه هسته ای و فیزیک ذرات بنیادی، دانشکده فیزیک، دانشگاه دامغان، دامغان، ایران.

چکیده

در این مقاله، سیاهچاله‌ی پاد دو سیته (‏‎(AdS‏ باردار در نظر گرفته شده و تصحیحات نمایی آنتروپی آن مطالعه شده‌است. پس ‏از آن، کمیت‌های ترمودینامیکی این سیاهچاله شامل جرم، دما، ظرفیت گرمایی و همچنین فشار و انرژی آزاد گیبس، مورد ‏بررسی قرار گرفته‌اند. سپس، هندسه‌ی ترمودینامیک این سیاهچاله به کمک روش های هندسی وینهلد، راپینر، کوودو، اچ پی ‏ای ام و ان تی جی، بررسی شده است. علاوه براین، تناظر بین تکینگی‌های خمش متریک‌های هندسی و نقاط گذار فاز ‏سیاهچاله، مورد بررسی قرار گرفته‌است. مشاهده شده است که فرمالیسم‌های کوودو(‏II‏)، اچ پی ای ام و ان تی جی، اطلاعات ‏کاملتری را در خصوص نقاط گذار فاز این سیاهچاله نسبت به فرمالیسم‌های وینهولد، راپینر و کوودو(‏I‏)، ارائه می دهند.‏

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Thermodynamic geometry of a charged AdS black hole ‎with corrected entropy

نویسندگان [English]

  • Saheb Soroushfar 1
  • Behnam Pourhassan 2
1 Department of Physics, Faculty of Technology and Mining, Yasouj University, Choram 75761-59836, Iran
2 School of Physics, Damghan University, Damghan, 3671641167, Iran
چکیده [English]

In this paper, a charged AdS black hole is considered and exponential corrections on entropy ‎are studied for it. Next, thermodynamic quantities of this black hole, including mass, ‎temperature, heat capacity, as well as pressure and Gibbs free energy, are investigated. Then, ‎the thermodynamic geometry of this black hole is investigated using the geometric methods of ‎Weinhold, Ruppeiner, Quevedo, HPEM and NTG. In addition, the correspondence between ‎singularities of the scalar curvature of these metrics and the black hole phase transition points ‎is investigated. It has been observed that Quevedo (II), HPEM and NTG formalisms provide ‎more information about the phase transition of this black hole compared with Weinhold, ‎Ruppeiner and Quevedo (I) formalisms.‎

کلیدواژه‌ها [English]

  • Black hole
  • Thermodynamics
  • Thermodynamic geometry
  • Phase transition
[1] S. Soroushfar, R. Saffari, N. Kamvar, Thermodynamic geometry of black holes in f(R) gravity, European Physical Journal C 76 (2016) 476.       https://doi.org/10.1140/epjc/s10052-016-4311-6
[2] LIGO Scientific and Virgo collaborations, Observation of gravitational waves from a binary black hole merger, Physical Review Letters 116 (2016) 061102. https://doi.org/10.1103/PhysRevLett.116.061102
[3] R.C. Tolman, Static Solutions of Einstein's Field Equations for Spheres of Fluid, Physical Review 55 (1939) 364373. https://doi.org/10.1103/PhysRev.55.364
[4] R.C. Tolman, Relativity, Thermodynamics, ‎and Cosmology, Dover Books on Physics Series, Dover ‎Publications, New York (1987).‎
[5] J.R. Oppenheimer, G.M. Volkoff, Physical Review 55 (1939) ‎‎374381.‎ https://doi.org/10.1103/PhysRev.55.374
[6] J.D. Bekenstein, Black holes and the second law. Lettere al Nuovo Cimento 4 (1972) 737–740. https://doi.org/10.1007/BF02757029
[7] J.M. Bardeen, B. Carter, S.W. Hawking, The four laws of black hole mechanics, Communications in Mathematical Physics, 31 (1973) 161-170. https://projecteuclid.org/euclid.cmp/1103858973
[8] S.W. Hawking Black hole explosions?, Nature 248 (1974) 30. https://doi.org/10.1038/248030a0
[9] S. Hawking, D.N. Page, Thermodynamics of black holes in anti-de Sitter space, Communications in Mathematical Physics 87 (1983) 577. https://doi.org/10.1007/BF01208266
[10] G. Gibbons, R. Kallosh, B. Kol, Moduli, Scalar Charges, and the First Law of Black Hole Thermodynamics , Physical Review Letters 77 4992 (1996). https://doi.org/10.1103/PhysRevLett.77.4992
[11] T. Padmanabhan, Classical and quantum thermodynamics of horizons in spherically symmetric spacetimes, Class. Quantum Grav. 19 (2002) 5387. https://doi.org/10.1088/0264-9381/19/21/306
[12] D. Kothawala, T. Padmanabhan, S. Sarkar, Is gravitational entropy quantized?, Physical Review D 78 (2008) 104018. https://doi.org/10.1103/PhysRevD.78.104018      
[13] B.P. Dolan, Pressure and volume in the first law of black hole thermodynamics, Class. Quantum Gravit 28 (2011) 235017. https://doi.org/10.1088/0264 9381/28/23/235017
[14] M. Eune, W. Kim, S.H. Yi, Hawking-Page phase transition in BTZ black hole revisited, Journal of High Energy Physics 03 (2013) 020. https://doi.org/10.1007/JHEP03(2013)020
[15] A.M. Frassino, D. Kubiznak, R.B. Mann et al. Multiple reentrant phase transitions and triple points in Lovelock thermodynamics. Journal of High Energy Physics 2014 (2014) 80. https://doi.org/10.1007/JHEP09(2014)080
[16] R.A. Hennigar, E. Tjoa, R.B.J. Mann, Thermodynamics of hairy black holes in Lovelock gravity. Journal of High Energy Physics 2017 (2017) 70. https://doi.org/10.1007/JHEP02(2017)070
[17] S.H. Hendi, F. Azari, E. Rahimi, M. Elahi, Z. Owjifard, Z. Armanfard, Thermodynamics and and phase transition of topological dilatonic Lifshitz-like black holes, Annalen der Physik 532 (2020) 10. https://doi.org/10.1002/andp.202000162
[18] S. Upadhyay, Quantum corrections to thermodynamics of quasitopological black holes, Physics Letters B 775 (2017) 130. https://doi.org/10.1016/j.physletb.2017.10.059
[19] B. Pourhassan, M. Faizal, S. Upadhyay, L.A. Asfar, B. PV, criticality of the second order quantum corrected Hořava–Lifshitz black hole, European Physical Journal C 77 (2017) 555. https://doi.org/10.1140/epjc/s10052-019-7257-7
[20] S. Upadhyay, B. Pourhassan, H. Farahani, P−V criticality of first-order entropy corrected AdS black holes in massive gravity, Physical Review D 95 106014 (2017). https://doi.org/10.1103/PhysRevD.95.106014
[21] A. Chatterjee, A. Ghosh, Exponential corrections to black hole entropy, Physical Review Letters 125 (2020) 041302. https://doi.org/10.1103/PhysRevLett.125.041302
[22] F. Weinhold, Metric geometry of equilibrium thermodynamics, Journal of Chemical Physics 63 (1975) 2479. https://doi.org/10.1063/1.431689
[23] F. Weinhold, Metric geometry of equilibrium thermodynamics. II. Scaling, homogeneity, and generalized Gibbs–Duhem relations, Journal of Chemical Physics 63 (1975) 2484. https://doi.org/10.1063/1.431635
[24] G. Ruppeiner, Thermodynamics: A Riemannian geometric model, Physical Review A 20 (1979) 1608. https://doi.org/10.1103/PhysRevA.20.1608
[25] G. Ruppeiner, Riemannian geometry in thermodynamic fluctuation theory, Reviews of Modern Physics 67 (1995) 605. https://doi.org/10.1103/RevModPhys.67.605
[26] H. Quevedo, R.D. Zarate, Differential geometry and thermodynamics, Revista Mexicana de Física 49 (2003) 125. 
[27] H. Quevedo, Geometrothermodynamics, Journal of Mathematical Physics 48 (2007) 013506. https://doi.org/10.1063/1.2409524
[28] S.H. Hendi, S. Panahiyan, B. Eslam Panah, M. Momennia, Thermodynamic instability of nonlinearly charged black holes in gravity’s rainbow, European Physical Journal C 75 (2015) 507. https://doi.org/10.1140/epjc/s10052-016-3994-z
[29] S.H. Hendi, S. Panahiyan, B. Eslam Panah, Geometrical Method for Thermal Instability of Nonlinearly Charged BTZ Black Holes , Advances in High Energy Physics 2015 (2015) 743086. https://doi.org/10.1155/2015/743086
[30] S.H. Hendi, A. Sheykhi, S. Panahiyan, B. Eslam Panah, Phase transition and thermodynamic geometry of Einstein-Maxwell-dilaton black holes, Physical Review D 92 (2015) 064028. https://doi.org/10.1103/PhysRevD.92.064028
[31] S.A. Hosseini Mansoori, B. Mirza, Geometrothermodynamics as a singular conformal thermodynamic geometry, Physics Letters B 799 (2019) 135040. https://doi.org/10.1016/j.physletb.2019.135040
[32] S.A. Hosseini Mansoori, Thermodynamic geometry of the novel 4-D Gauss Bonnet AdS Black Hole, [arXiv: 2003.13382 [gr-qc]] (2020).
[33] S. Soroushfar, S. Upadhyay, Phase transition of a charged AdS black hole with a global monopole through geometrical thermodynamics, Physics Letters B 804 (2020) 135360. https://doi.org/10.1016/j.physletb.2020.135360
[34] S. Soroushfar, R. Saffari, S. Upadhyay, Thermodynamic geometry of a black hole surrounded by perfect fluid in Rastall theory. Gen Relativ Gravit 51 (2019) 130. https://doi.org/10.1007/s10714-019-2614-2
[35] N.J. Gogoi, P. Phukon, Thermodynamic geometry of 5D R-charged black holes in extended thermodynamic space, Physical Review D 103 126008 (2021) 126008. https://doi.org/10.1103/PhysRevD.103.126008[36] S. Upadhyay, S. Soroushfar, R. Saffari, First-order corrected thermodynamic geometry of a static black hole in f(R) gravity (2018).[37] B. Eslam Panah, Effects of energy dependent spacetime on geometrical thermodynamics and heat engine of black holes: Gravity's rainbow, Physics Letters B 787 (2018) 45. https://doi.org/10.1016/j.physletb.2018.10.042
[38] T. Vetsov, Information geometry on the space of equilibrium states of black holes in higher derivative theories, European Physical Journal C 79 (2019) 71. https://doi.org/10.1140/epjc/s10052-019-6553-6
[39] M. Chabab, H. El Moumni, S. Iraoui. K. Masmar, Phase transitions and geothermodynamics of black holes in dRGT massive gravity, European Physical Journal C 79 (2019) 342. https://doi.org/10.1140/epjc/s10052-019-6850-0
[40] H. Lü, C.N. Pope, Q. Wen Thermodynamics of AdS black holes in Einstein-Scalar gravity, Journal of High Energy Physics 165 (2015). https://doi.org/10.1007/JHEP03(2015)165
[41] P. Wang, H. Wu, H. Yang Thermodynamic geometry of AdS black holes and black holes in a cavity European Physical Journal C 80 (2020) 216. https://doi.org/10.1140/epjc/s10052-020-7776-2
[42] A. Belhaj, H. Belmahi, M. Benali, A. Segui, Thermodynamics of AdS black holes from deflection angle formalism, Physics Letters B 817 (2021) 136313. https://doi:10.1016/j.physletb.2021.136313[43] B. Pourhassan, M. Faizal, Thermal fluctuations in a charged AdS black hole, EPL 111 (2015) 40006. https://doi.org/10.1209/0295-5075/111/40006[44] B. Pourhassan, K. Kokabi, Z. Sabery, Higher order corrected thermodynamics and statistics of Kerr-Newman-Godel black hole, Annals of Physics 399 (2018) 181-192. https://doi:10.1016/j.aop.2018.10.011
[45] B. Pourhassan, M. Faizal, Quantum Corrections to the Thermodynamics of Black Branes [arXiv:2011.00198 [hep-th]].
[46] B. Pourhassan, M. Dehghani, M. Faizal, S. Dey, Non-perturbative quantum corrections to a Born-Infeld black hole and its information geometry, Classical and Quantum Gravity 38 (2021) 10500. https://doi:10.1088/1361-6382/abdf6f[47] S.H. Hendi, R. Ramezani-Arani, E. Rahimi, Thermal stability of d-dimensional Lifshitz like topological black holes in special class of F(R) gravity, Journal of Research on Many-body Systems (1399). https://doi.org/10.22055/jrmbs.2020.15569