بررسی خواص الکترونی، مغناطیسی و اپتیکی ترکیبات تمام‌هویسلر V2ScX(X = Ga, In)

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 گروه فیزیک، دانشگاه پیام‌نور، ص.پ. 3697-19395، تهران، ایران

2 گروه فیزیک، دانشکده علوم، دانشگاه شیراز، شیراز، ایران

چکیده

با استفاده از نظریه تابعی چگالی، خواص الکترونی، مغناطیسی و اپتیکی ترکیبات تمام‌هویسلر V2ScX (X = Ga, In) مورد بررسی قرار گرفته است. نتایج نشان می‌دهند که V2ScIn دارای گاف نیم‌فلزی به اندازه 45/0 الکترون‌ولت است و یک فرومغناطیس نیم‌فلز می‌باشد که خاصیت نیم‌فلزی خود را در بازه نسبتا بزرگی از ثابت شبکه حفظ می‌کند. این ترکیب برای کاربردهای اسپینترونیک مناسب است. ترکیب V2ScGa رفتار فلزی از خود نشان می‌دهد. این ترکیبات تمام‌هویسلر از رابطه اسلیتر-پائولینگ پیروی می‌کنند و دارای مغناطش کل صحیحی می‌باشند. بعد از بررسی خواص اپتیکی این نتیجه حاصل شد که این ترکیبات می‌توانند گزینه مناسبی برای استفاده به عنوان جاذب امواج باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Electronic, Magnetic and Optical Properties of V2ScX (Z = Ga, In) Full-Heusler Compounds

نویسندگان [English]

  • Ghasem Forozani 1
  • ّFateme Karami 1
  • Mahmood Moradi 2
1 Department of Physics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
2 Department of Physics, Shiraz University, Shiraz, Iran
چکیده [English]

Using the density functional theory and generalized gradient approximation, the electronic, magnetic and optical properties of V2ScX (X = Ga, In) have been investigated. The results show that the V2ScIn is a half-metallic ferromagnet and preserved its half-metallicity in the relatively larger lattice constants. This compound has half-metallic gap of 0.45 eV. V2ScIn is suitable for spintronic applications. V2ScGa compound shows metallic behavior. These full-Heusler compounds follow the Slater-Pauling rule and have the integer total magnetization. The Curie temperature of V2ScGa and V2ScIn were estimated to be 341 and 496 K respectively. The results of investigating the optical properties show that these compounds are good candidates to absorb waves.

کلیدواژه‌ها [English]

  • Full-Heusler compounds
  • Density functional theory
  • optical properties
  • Spintronics
[1] N. Kervan, S. Kervan, Half-metallic properties in the Fe2TiP full-Heusler compound, Intermetallics 37 (2013) 88-91. https://doi.org/10.1016/j.intermet.2013.02.005
[2] O. Canko, F. Taskin, M. Atis, N. Kervan, S. Kervan, Magnetism and halfmetallicity in the Fe2ZrP Heusler alloy, Journal of Superconductivity and Novel Magnetism 29 (2016) 1-6.    https://doi.org/10.1007/s10948-016-3576-1
[3] X.D. Xu, Z.X. Chen et al. Microstructure, magnetic and transport properties of a Mn2CoAl Heusler compound, Acta Materialia 176 (2019) 33-42. https://doi.org/10.1016/j.actamat.2019.06.047  
[4] A. Birsan, V. Kuncser, First principle investigations of the structural, electronic and magnetic properties of predicted new zirconium based full-Heusler compounds, Zr2MnZ (Z=Al, Ga and In), Journal of Magnetism and Magnetic Materials 406 (2016) 282–288.     https://doi.org/10.1016/j.jmmm.2016.01.032
[5] I. Asfour, H. Rached, S. Benalia, D. Rached, Investigation of electronic structure, magnetic properties and thermal properties of the new half-metallic ferromagnetic full-Heusler alloys Cr2GdSi1-xGex: an ab-initio study, Journal of Alloys and Compounds 676 (2016) 440– 451.   https://doi.org/10.1016/j.jallcom.2016.03.075
[6] F. Bagverdi, F. Ahmadian, First principles study of half-metallic ferromagnetism of the full-Heusler compounds RbSrX2 (X= C, N, and O), Journal of Superconductivity and Novel Magnetism 28 (2015) 2773–2781. https://doi.org/10.1007/s10948-015-3094-6
[7] J. Jalilian, Comment on Study of electronic, magnetic, optical and elastic properties of Cu2MnAl a gapless full Heusler compound, Journal of Alloys and Compounds 626 (2015) 277–279.        https://doi.org/10.1016/j.jallcom.2014.12.039
[8] M. Ilkhani, Half-metallic behavior, thermodynamic stability and thermoelectric performance of new CoXMnSi (X=Rh, Tc) quaternary Heuslers, Journal of many body systems 11 (2021) 13-27. https://doi.org/10.22055/jrmbs.2021.17055
[9] M. Moradi, N. Taheri, M. Rostami, Structural, electronic, magnetic and vibrational properties of half-Heusler NaZrZ (Z = P, As, Sb) compounds, Physics Letters A 382 (2018) 3004-3011.     https://doi.org/10.1016/j.physleta.2018.07.008
[10] M. Safavi, M. Moradi, M. Rostami, Structural, Electronic and Magnetic Properties of NaKZ (Z=N, P, As, and Sb) Half-Heusler Compounds: a First-Principles study, Journal of Superconductivity and Novel Magnetism 30 (2016) 989-997. https://doi.org/10.1007/s10948-016-3865-8
[11] A. Lakdja, H. Rozale, A. Chahed, O. Benhelal, Ferromagnetism in the half-Heusler XCsBa compounds from first-principles calculations (X = C, Si, and Ge), Journal of Alloys and Compounds 564 (2015) 8–12.   https://doi.org/10.1016/j.jallcom.2013.02.026
[12] W. Huang, X. Wang, X. Chen, W. Lu, L. Damewood, C.Y. Fong, Structural and electronic properties of half-Heusler alloys PtXBi (with X=Mn, Fe, Co and Ni) calculated from first principles, Journal of Magnetism and Magnetic Materials 377 (2015) 252–258.     https://doi.org/10.1016/j.jmmm.2014.10.068
[13] S.A. Khandy, D.C. Gupta, Electronic structure, magnetism and thermoelectricity in layered perovskites: Sr2SnMnO6 and Sr2SnFeO6, Journal of Magnetism and Magnetic Materials 441 (2017) 166-173. https://doi.org/10.1016/j.jmmm.2017.05.058
[14] S.A. Khandy, I. Islam, D.C. Gupta, A. Laref, Full Heusler alloys (Co2TaSi and Co2TaGe) as potential spintronic materials with tunable band profiles, Journal of Solid State Chemistry 270 (2019) 173-179.          https://doi.org/10.1016/j.jssc.2018.11.011
[15] S. Li, C. Cheng, K. Meng, C. Chen, Excitation fluence dependence of spin-wave dynamics and intrinsic Gilbert damping in epitaxial Co2FeAl film, Japanese Journal of Applied Physics 58 (2019) 040903.        https://doi.org/10.7567/1347-4065/ab07eb
[16] M. Urdampilleta, S. Klyatskaya, J. Cleuziou, et al. Supramolecular spin valves, Nature Materials 10 (2011) 502-506. https://doi.org/10.1038/nmat3050
[17] A. Bsiesy, Spin injection into semiconductors: towards a semiconductor-based spintronic device, Comptes Rendus Physique 6 (2005) 1022-1026. https://doi.org/10.1016/j.crhy.2005.11.003
[18] R.A.P. Ribeiro, A. Camilo, S.R. De Lazaro, Electronic structure and magnetism of new ilmenite compounds for spintronic devices: FeBO3 (B = Ti, Hf, Zr, Si, Ge, Sn), Journal of Magnetism and Magnetic Materials 394 (2015) 463–469. https://doi.org/10.1016/j.jmmm.2015.05.096
[19] P. Giannozzi et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of Physics: Condensed Matter 21 (2009) 395502.   https://doi.org/10.1088/0953-8984/21/39/395502 
[20] X.P. Wei, Y.D. Chu, X.W. Sun, J.B. Deng, Y.Z. Xing, Stability, electronic, magnetic and pressure effect of half-Heusler alloys CNaCa and SiNaCa: a first-principles study, Superlattices Microstructres 74 (2014) 70–77. https://doi.org/10.1016/j.spmi.2014.06.018
[21] J.C. Slater, The Ferromagnetism of Nickel. II. Temperature Effects, Physical Review journals 49 (1936) 931-937.            https://doi.org/10.1103/PhysRev.49.931
[22] L. Pauling, The Nature of the Interatomic Forces in Metals, Physical Review journals 54 (1938) 899-904.      https://doi.org/10.1103/PhysRev.54.899
[23] K. Sato, et al. Exchange interactions in diluted magnetic semiconductors, Journal of Physics: Condensed Matter 16 (2004) S5491–S5497. https://doi.org/10.1088/0953-8984/16/48/003
[24] A. Delin, O. Eriksson, R. Ahuja, B. Johansson, M.S.S. Brooks, T. Gasche, S. Auluck, J.M. Wills, Optical properties of the group-IVB refractory metal compounds, Physical Review B 54 (1996) 1673-1681. https://doi.org/10.1103/PhysRevB.54.1673ر