طول عمرنوسان‌ها و مسیر آزاد میانگین فونون‌های گرافن با استفاده از دینامیک مولکولی و چگالی انرژی طیفی

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

گروه فیزیک ، دانشگاه پیام نور ، صندوق پستی 3697-19395 تهران، ایران

چکیده

در این تحقیق شبیه‌سازی دینامیک مولکولی با تجزیه و تحلیل طیفی فونون با هدف درک رسانش گرمایی در گرافن انجام شد. برای محاسبه طول عمر و مسیر آزاد میانگین فونون‌های هر مد از سرعت اتم‌های به‌دست آمده از شبیه‌سازی دینامیک مولکولی، تجزیه و تحلیل چگالی انرژی طیفی استفاده گردید. محاسبات انجام شده نشان می‌دهد که فونون‌های آکوستیکی یعنی فونون‌های مربوط به مدهای ZA،LA وTA طول عمر و مسیر آزاد میانگین بیشتری داشته در نتیجه سهم بیشتری در رسانش گرمایی دارند. در بین فونون‌های اپتیکی فونون‌های مربوط به مد ZO یعنی ارتعاش‌های خارج از صفحه گرافن نسبت به مدهای LO ,TO طول عمر قابل ملاحظه‌ای دارند ولی به دلیل سرعت گروه پایین نقش آنها در رسانش گرمایی ناچیز است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Vibrational Lifetimes and Phonons Mean Free Path of Graphene Using Molecular Dynamics and Spectral Energy Density

نویسندگان [English]

  • morteza mafakheri
  • AmirAbbas Sabouri Dodaran
Department of physics, Payame Noor university (PNU), P.O. Box 19395-3697, Tehran, Iran
چکیده [English]

In this research we performed molecular dynamics (MD) simulations with phonon spectral analysis aiming at understanding the thermal transport in graphene. Atomic velocities derived from MD and spectral energy density (SED) analysis are used to obtain the lifetimes and mean free paths (MFP) of individual phonon modes. Our calculations show that acoustical phonons ZA, LA and TA phonons have larger lifetimes and MFP so they have more contribution in thermal conductivity. Among Optical phonons, ZO, out of plane modes, have longer lifetimes respect to LO and TO phonon modes but because of little group velocity their contribution in thermal conductivity is negligible.

کلیدواژه‌ها [English]

  • Graphene
  • Phonon Lifetime
  • Mean Free Path
  • Molecular Dynamics
  • Spectral Energy Density
[1] C. Wonbong, J. Lee. Graphene Synthesis and Applications, Taylor & Francis Group, (2012). https://doi.org/10.1016/S1369-7021(12)70044-5
[2] S.K. Pati, T. Enoki, C.N.R. Rao. Graphene and its Fascinating Attributes World Scientific Publishing Co. Pte. Ltd. (2011). https://doi.org/10.1142/7989
[3] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Mater 6 (2007) 11-19. https://doi.org/10.1142/9789814287005_0002
[4] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Letters 8 (2008) 902-907. https://doi.org/10.1021/nl0731872
[5] J.H. Seol, I. Jo, A.L. Moor, Lindsay, Z.H. Aitken, M.T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, et al., Two-Dimensional Phonon Transport in Supported Graphene, Science 328 (2010) 213-216.  https://doi.org/10.1126/science.1184014
[6] A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nature Mater 10 (2011) 569–581. https://doi.org/10.1038/nmat3064
[7] G. Basile, C. Bernardin, S. Olla, Momentum Conserving Model with Anomalous Thermal Conductivity in Low Dimensional Systems, Physical Review Letters 96 (2006) 204303 https://doi.org/10.1103/PhysRevLett.96.204303
[8] W. Cai, A.L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, R.S. Ruoff, Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition, Nano Letters 10 (2010) 1645–1651. https://doi.org/10.1021/nl9041966
[9] J. Callaway, H.C. von Baeyer, Effect of Point Imperfections on Lattice Thermal Conductivity, Physical Review 120 (1960) 1149. https://doi.org/10.1103/PhysRev.120.1149
[10] M.G. Holland, Phonon Scattering in Semiconductors from Thermal Conductivity Studies, Physical Review 132 (1963) 2461. https://doi.org/10.1103/PhysRev.134.A471
[11] A.J.H. McGaughey, M. Kaviany, Quantitative validation of the Boltzmann transport equation phonon thermal conductivity model under the single-mode relaxation time approximation, Physical Review B 69 (2004) 094303 https://doi.org/10.1103/PhysRevB.69.094303
[12] E.S. Landry, M.I. Hussein, A.J.H. McGaughey, Complex superlattice unit cell designs for reduced thermal conductivity, Physical Review B 77 (2008) 184302. https://doi.org/10.1103/PhysRevB.77.184302
[13] P.K. Schelling, S.R. Phillpot, P. Keblinski, Comparison of atomic-level simulation methods for computing thermal conductivity, Physical Review B 65 (2002) 144306. https://doi.org/10.1103/PhysRevB.65.144306
[14] D.P. Sellan, E.S Landry, J.E. Turney, A.J.H. McGaughey, C.H. Amon, Size effects in molecular dynamics thermal conductivity predictions, Physical Review B 81 (2010) 214305. https://doi.org/10.1103/PhysRevB.81.214305
[15] A.J.C. Ladd, B. Moran, W.G. Hoover, Lattice thermal conductivity: A comparison of molecular dynamics and anharmonic lattice dynamics, Physical Review B 34 (1986) 5058. https://doi.org/10.1103/PhysRevB.34.5058
[16] A.S. Henry, G. Chen, Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics, Journal of Computational and Theoretical Nanoscience 5 (2008) 1-12. https://doi.org/10.1166/jctn.2008.2454
[17] J.V. Goicochea, M. Madrid, C.H. Amon, Thermal Properties for Bulk Silicon Based on the Determination of Relaxation Times Using Molecular Dynamics, Journal of Heat Transfer, 132 (2010) 012401. https://doi.org/10.1115/1.3211853
[18] A.A. Maradudin, A.E. Fein, Scattering of Neutrons by an Anharmonic Crystal, Physical Review 128 (1962) 2589.
[19] D.C. Wallace, Thermodynamics of Crystals. Cambridge, (1972).
[20] M.T. Dove, Introduction to Lattice Dynamics. Cambridge (1993). https://doi.org/10.1017/CBO9780511619885
[21] J.E. Turney, E.S. Landry, A.J.H. McGaughey, C.H. Amon, Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations, Physical Review B 79 (2009) 064301. https://doi.org/10.1103/PhysRevB.79.064301
[22] B. Lindsay, N. Mingo, Flexural phonons and thermal transport in graphene, Physical Review B 82 (2010) 115427. https://doi.org/10.1103/PhysRevB.82.115427
[23] Z. Wei, B. Yang, Y. Chen, Phonon mean free path of graphite along the c-axis, Journal of Applied Physics 116 (2014) 153503. https://doi.org/10.1063/1.4866416
[24] T. Feng, X. Ruan, Four-phonon scattering reduces intrinsic thermal conductivity of graphene and the contributions from flexural phonons, Physical Review B 97 (2018) 045202. https://doi.org/10.1103/PhysRevB.97.045202
[25] E. Koukaras, G. Kalosakas, C. Galiotis, K. Papagelis, Phonon properties of graphene derived from molecular dynamics simulations, Scientific Reports 5 (2015) 12923. https:// doi.org/10.1038/srep12923
[26] R. Qiu, Reduction of spectral phonon relaxation times from suspended to supported graphene, Applied Physics Letters 100 (2012) 193101. https://doi.org/10.1063/1.4712041
[27] Z. Ji-Hang, X. Xin-Tong, C. Bing-Yang, Size-dependent mode contributions to the thermal transport of suspended and supported graphene, Applied Physics Letters 115 (2019) 123105.  https://doi.org/10.1063/1.5115060
[28] C. Bing-Yang, Z. Ji-Hang, H. Guo-Jie, C. Gui-Xing, Enhanced thermal transport across multilayer graphene and water by interlayer functionalization, Applied Physics Letters 112 (2018) 041603. https://doi.org/10.1063/1.5018749
[29] Z. Ji-Hang, C. Bing-Yang, Phonon thermal properties of graphene on h-BN from molecular dynamics simulations, Applied Physics Letters 110 (2017) 103106. https://doi.org/10.1063/1.4978434
[30] Z. Ji-Hang, Y. Zhen-Qiang, C. Bing-Yang, Phonon thermal properties of graphene from molecular dynamics using different potentials, Journal of Chemical Physics 145 (2016) 134705.  https://doi.org/10.1063/1.4963918
[31] S. Maruyuma, A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube, Nanoscale and Microscale Thermophysical Engineering 7 (2003) 41-50. https://doi.org/10.1080/10893950390150467
[32] J. Shiomi, S. Maruyama, Non-Fourier heat conduction in a single-walled carbon nanotube: Classical molecular dynamics simulations, Physical Review B 73 (2006) 205420. https://doi.org/10.1103/PhysRevB.73.205420
[33] N. de Koker, Thermal Conductivity of MgO Periclase from Equilibrium First Principles Molecular Dynamics, Physical Review Letters, 103, (2009) 125902. https://doi.org/10.1103/PhysRevLett.103.125902
[34] J.A. Thomas, J.E. Turney, R.M. Iutzi, C.H. Amon, A.J.H. McGaughey, Predicting phonon dispersion relations and lifetimes from the spectral energy density, Physical Review B 81 (2010) 081411. https://doi.org/10.1103/PhysRevB.81.081411
[35] P. Mukherjee, I. Kass, I. Arkin, M.T. Zanni, Picosecond dynamics of a membrane protein revealed by 2D IR, Proceedings of the National Academy of Sciences of the United States of America, 103 (2006) 8571. https://doi.org/10.1073/pnas.0508833103
[36] B. Qiu, L. Sun, X. Ruan, Lattice thermal conductivity reduction in Bi2Te3 quantum wires with smooth and rough surfaces: A molecular dynamics study, Physical Review B 83 (2011) 035312. https://doi.org/10.1103/PhysRevB.83.035312
[37] J.E. Turney, E.S. Landry, A.J.H. McGaughey, C.H. Amon, Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations, Physical Review B 79 (2009) 064301. https://doi.org/10.1103/PhysRevB.79.064301
[38] B. Qiu, H. Bao, G. Zhang, Y. Wu, X. Ruan, Molecular Dynamics Simulations of Lattice Thermal Conductivity and Spectral Phonon Mean Free Path of PbTe: Bulk and Nanostructures, Computational Materials Science 53 (2012) 278-285. https://doi.org/10.1016/j.commatsci.2011.08.016