[1] A.-L. Barabási, H.E. Stanley, Fractal concepts in surface growth, Cambridge university press, New York, (1995).
[2] A. Brú, S. Albertos, J.L. García-Asenjo, I. Brú, Pinning of Tumoral Growth by Enhancement of the Immune Response, Physical Review Letters, 92 (2004) 238101-4.
[3] M.A. Rubio, C.A. Edwards, A. Dougherty, J.P. Gollub, Self-affine fractal interfaces from immiscible displacement in porous media, Physical Review Letters, 63 (1989) 1685-1688.
[4] G. Blatter, M.V. Feigel'Man, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Vortices in high-temperature superconductors, Reviews of Modern Physics, 66 (1994) 1125-1388.
[5] L.A.N. Amaral, A.-L. Barabási, H.A. Makse, H.E. Stanley, Scaling properties of driven interfaces in disordered media, Physical Review E, 52 (1995) 4087-4104.
[6] J.M. Kim, H. Choi, Depinning Transition of the Quenched Edwards-Wilkinson Equation, Journal of the Korean Physical Society, 48 (2006) S241-S244.
[7] M.-P. Kuittu, M. Haataja, T. Ala-Nissila, Dynamics of driven interfaces in algebraically correlated random media, Physical Review E, 59 (1999) 2677-2682.
[8] Z.-F. Huang, B.-L. Gu, Growth equations for the Wolf-Villain and Das Sarma-Tamborenea models of molecular-beam epitaxy, Physical Review E, 54 (1996) 5935-5941.
[9] J.M. López, M.A. Rodríguez, Interface dynamics at the depinning transition, Journal of Physics I, 7 (1997) 1191-1200.
[10] A. Bunde, S. Havlin, Fractals in science, Springer, Berlin, (1994).
[11] C. Escudero, Geometrical approach to tumor growth, Physical Review E, 74 (2006) 1-7.
[12] C. Escudero, Stochastic models for tumoural growth, Physical Review E, 73 (2006) 1-4.
[13] H. Liu, W. Zhou, Q.-M. Nie, Q.-H. Chen, Depinning transition of the quenched Mullins–Herring equation: A short-time dynamic method, Physics Letters A, 372 (2008) 7077-7080.
[14] D. Raoufi, A. Kiasatpour, H.R. Fallah, A.S.H. Rozatian, Surface characterization and microstructure of ITO thin films at different annealing temperatures, Applied Surface Science, 253 (2007) 9085-9090.
[15] J.M. López, M.A. Rodríguez, R. Cuerno, Superroughening versus intrinsic anomalous scaling of surfaces, Physical Review E, 56 (1997) 3993-3998.
[16] F. Family, T. Vicsek, Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model, Journal of Physics A: Mathematical and General, 18 (1985) L75-L81.
[17] B.B. Mandelbrot, Fractals: Form, Chance and Dimension, Freeman, San Francisco, (1977).
[18] H. Leschhorn, Interface depinning in a disordered medium: Numerical results, Physica A: Statistical Mechanics and its Applications, 195 (1993) 324-335.
[19] H.S. Song, J.M. Kim, Depinning transition of the quenched mullins-herring equation, Journal of the Korean Physical Society, 49 (2006) 1520-1523.