بررسی اثر نوفة غیرفعال در مدل‌های رشد پیوسته سطح

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 عضو هیات علمی -دانشگاه بوعلی -دانشیار

2 دانشجو

3 عضو هیات علمی -دانشگاه شیراز

چکیده

معادلة مولینس-هرینگ یکی از مدل‌های مطرح در رشد سطح می‌باشد. هدف از این پژوهش، بررسی اثر نوفه غیرفعال بر روی این معادله با روشی جدید است. نکته کلیدی در این مدلی که ارایه کردیم، تجمیع نیروی خارجی اعمال شده بر فصل مشترک و نوفه غیرفعال در قالب یک جمله است که بوسیلة پارامتر قابل کنترل خارجی g شدت آن تنظیم می‌شود. دینامیک مدل پیشنهادی به‌ازای مقادیر مشخصی از g دارای رفتار بحرانی است. همچنین، محاسبات ما نشان می‌دهند که، به‌ازای مقادیر 2 و 1 g= هیچ‌گونه گذار فازی نخواهیم داشت. مهم‌ترین مشخصة بحرانیت، وجود نماهای مقیاس‌بندی است که در این مطالعه به محاسبة عددی این کمیت‌ها پرداخته‌ایم. بر این اساس برای 3 g = نقطة بحرانی را برابر 6504/0 به‌دست آورده‌ایم. در این نقطه، نمای ناهمواری کل و ناهمواری موضعی به‌ترتیب برابر 410/1 و 011/1 به‌دست آمده است. برابر نبودن این دو مقدار یعنی ناهمواری کل و ناهمواری موضعی یکی از مهم‌ترین اثرات نوفه غیرفعال در مدل‌های رشد است که نشان دهنده تغییر در ساختار سطح ایجاد شده می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the effect of quenched noise in continuous surface growth models

نویسندگان [English]

  • Davood Raoufi 1
  • Mahmood Rostami 2
  • Mohsen Ghasemi Nezhadhaghighi 3
1 Bu-Ali Sina University -Associate Professor
2 Student
3 Assistant Professor
چکیده [English]

The Mullins–Herring equation is an important model in surface growth. This research aimed to explore quenched noise on this model using a new approach. The key point in this model is combination of the external force on the interface and quenched noise on one part with its strength adjusted with an external controllable parameter, g. It is shown that the dynamics of this model for some values of g have critical behaver. Also, our calculations show that, for g = 1 and 2 values there is no phase transition. The important feature of criticality is the existence of scaling exponents which in this study were computed numerically. As a result, for g = 3 the critical point was obtained (0.6504). At this point, the total roughness exponent and local roughness exponent were obtained (1.410 and 1.011), respectively. The inequality of these two values, that is the total and local roughness exponents, is one of the most important effects of quenched noise in growth models which indicates the variation in structure of the produced surface. 

کلیدواژه‌ها [English]

  • Surface Growth
  • Mullins-Herring Equation
  • Quench Noise
  • Roughness
[1] A.-L. Barabási, H.E. Stanley, Fractal concepts in surface growth, Cambridge university press, New York, (1995).
[2] A. Brú, S. Albertos, J.L. García-Asenjo, I. Brú, Pinning of Tumoral Growth by Enhancement of the Immune Response, Physical Review Letters, 92 (2004) 238101-4.
[3] M.A. Rubio, C.A. Edwards, A. Dougherty, J.P. Gollub, Self-affine fractal interfaces from immiscible displacement in porous media, Physical Review Letters, 63 (1989) 1685-1688.
[4] G. Blatter, M.V. Feigel'Man, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Vortices in high-temperature superconductors, Reviews of Modern Physics, 66 (1994) 1125-1388.
[5] L.A.N. Amaral, A.-L. Barabási, H.A. Makse, H.E. Stanley, Scaling properties of driven interfaces in disordered media, Physical Review E, 52 (1995) 4087-4104.
[6] J.M. Kim, H. Choi, Depinning Transition of the Quenched Edwards-Wilkinson Equation, Journal of the Korean Physical Society, 48 (2006) S241-S244.
[7] M.-P. Kuittu, M. Haataja, T. Ala-Nissila, Dynamics of driven interfaces in algebraically correlated random media, Physical Review E, 59 (1999) 2677-2682.
[8] Z.-F. Huang, B.-L. Gu, Growth equations for the Wolf-Villain and Das Sarma-Tamborenea models of molecular-beam epitaxy, Physical Review E, 54 (1996) 5935-5941.
[9] J.M. López, M.A. Rodríguez, Interface dynamics at the depinning transition, Journal of Physics I, 7 (1997) 1191-1200.
[10] A. Bunde, S. Havlin, Fractals in science, Springer, Berlin, (1994).
[11] C. Escudero, Geometrical approach to tumor growth, Physical Review E, 74 (2006) 1-7.
[12] C. Escudero, Stochastic models for tumoural growth, Physical Review E, 73 (2006) 1-4.
[13] H. Liu, W. Zhou, Q.-M. Nie, Q.-H. Chen, Depinning transition of the quenched Mullins–Herring equation: A short-time dynamic method, Physics Letters A, 372 (2008) 7077-7080.
[14] D. Raoufi, A. Kiasatpour, H.R. Fallah, A.S.H. Rozatian, Surface characterization and microstructure of ITO thin films at different annealing temperatures, Applied Surface Science, 253 (2007) 9085-9090.
[15] J.M. López, M.A. Rodríguez, R. Cuerno, Superroughening versus intrinsic anomalous scaling of surfaces, Physical Review E, 56 (1997) 3993-3998.
[16] F. Family, T. Vicsek, Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model, Journal of Physics A: Mathematical and General, 18 (1985) L75-L81.
[17] B.B. Mandelbrot, Fractals: Form, Chance and Dimension, Freeman, San Francisco, (1977).
[18] H. Leschhorn, Interface depinning in a disordered medium: Numerical results, Physica A: Statistical Mechanics and its Applications, 195 (1993) 324-335.
[19] H.S. Song, J.M. Kim, Depinning transition of the quenched mullins-herring equation, Journal of the Korean Physical Society, 49 (2006) 1520-1523.